Trắc nghiệm Bài 1: Hình hộp chữ nhật - Hình lập phương Toán 7 Chân trời sáng tạo
Đề bài
Hãy kể tên các mặt của hình hộp chữ nhật $ABCD.A'B'C'D'$. Hãy chọn câu sai
-
A.
mp $\left( {ABCD} \right)$.
-
B.
mp $\left( {A'B'C'D'} \right)$.
-
C.
mp $\left( {ABB'A'} \right)$.
-
D.
mp $\left( {AB'C'D} \right)$.
Hãy chọn câu sai. Hình hộp chữ nhật $ABCD.{\rm{ }}A'B'C'D'$ có
-
A.
$8$ đỉnh.
-
B.
$12$ cạnh.
-
C.
$6$ cạnh.
-
D.
$6$ mặt.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ , chọn khẳng định đúng.
-
A.
\(AC'\) và \(DB'\) cắt nhau
-
B.
\(AC'\) và $BC$ cắt nhau
-
C.
$AC$ và $DB$ không cắt nhau
-
D.
$AB$ và $CD$ cắt nhau.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Gọi tên mặt phẳng chứa đường thẳng $A'B$ và $CD'$. Hãy chọn câu đúng .
-
A.
mp$\left( {ABB'A'} \right)\;\;\;$.
-
B.
mp $\left( {ADD'A'} \right)$.
-
C.
mp $\left( {DCC'D'} \right)\;\;\;$.
-
D.
mp $\left( {A'BCD'} \right)\;\;\;$.
Hãy kể tên những cạnh bằng nhau của hình hộp chữ nhật $ABCD.A'B'C'D'$.
Hãy chọn câu sai
-
A.
$AB = A'B'$.
-
B.
$DC = D'C'\;\;\;$.
-
C.
$AB{\rm{ }} = {\rm{ }}C'D'\;\;$.
-
D.
$DC{\rm{ }} = {\rm{ }}DD'$.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Có bao nhiêu cạnh cắt cạnh $AB$
-
A.
$4$.
-
B.
$3$.
-
C.
$2$.
-
D.
$5$.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Có bao nhiêu cạnh song song với cạnh $AB$
-
A.
$4$.
-
B.
$3$.
-
C.
$2$.
-
D.
$5$.
Trong các mặt của một hình hộp chữ nhật, tính số cặp mặt song song với nhau là
-
A.
$4$.
-
B.
$2$.
-
C.
$3$.
-
D.
$0$.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M,{\rm{ }}N,{\rm{ }}I,{\rm{ }}K$ theo thứ tự là trung điểm $AA',{\rm{ }}BB',{\rm{ }}CC',{\rm{ }}DD'$. Hãy chọn câu sai
-
A.
Bốn điểm $M,{\rm{ }}N,{\rm{ }}I,{\rm{ }}K$cùng thuộc một mặt phẳng.
-
B.
mp $\left( {MNIK} \right)$// mp $\left( {ABCD} \right)$.
-
C.
mp $\left( {MNIK} \right)$ // mp $\left( {A'B'C'D'} \right)$.
-
D.
mp $\left( {MNIK} \right)$ // mp $\left( {ABB'A'} \right)$.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $O$ và $O'$ lần lượt là tâm \(ABCD;\,A'B'C'D'\) . Hai mp $(ACC'A')$ và mp $\left( {BDD'B'} \right)$ cắt nhau theo đường nào?
-
A.
$OO'$.
-
B.
$CC'$.
-
C.
$AD$.
-
D.
$AO$.
Cho hình lập phương $ABCD.A'B'C'D'$. Tính số đo góc \(AB'C\) .
-
A.
$90^\circ $.
-
B.
$45^\circ $.
-
C.
$30^\circ $.
-
D.
$60^\circ $.
Tình độ dài của một chiếc hộp hình lập phương, biết rằng nếu độ dài mỗi cạnh của hộp tang thêm $2\,cm$ thì diện tích phải sơn $6$ mặt bên ngoài của hộp đó tăng thêm $216\,c{m^2}$ .
-
A.
$4\,cm$.
-
B.
$8\,cm$.
-
C.
$6\,cm$.
-
D.
$5\,cm$.
Hình hộp chữ nhật có
-
A.
\(4\) mặt, \(8\) đỉnh, \(12\) cạnh
-
B.
\(6\) mặt, \(8\) đỉnh, \(12\) cạnh
-
C.
\(6\) mặt, \(12\) đỉnh, \(8\) cạnh
-
D.
\(8\) mặt, \(6\) đỉnh, \(12\) cạnh
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Phát biểu nào sau đây đúng?
-
A.
\(AB = CD\)
-
B.
\(B'C' = CC'\)
-
C.
\(CD = AD\)
-
D.
\(BC = B'B'\)
Cho hình lập phương \(ABCD.A'B'C'D'\). Phát biểu nào sau đây là đúng?
-
A.
6 mặt là hình chữ nhật
-
B.
6 mặt là hình vuông
-
C.
6 mặt là hình thoi
-
D.
8 mặt là hình vuông
Lời giải và đáp án
Hãy kể tên các mặt của hình hộp chữ nhật $ABCD.A'B'C'D'$. Hãy chọn câu sai
-
A.
mp $\left( {ABCD} \right)$.
-
B.
mp $\left( {A'B'C'D'} \right)$.
-
C.
mp $\left( {ABB'A'} \right)$.
-
D.
mp $\left( {AB'C'D} \right)$.
Đáp án : D
Hình hộp chữ nhật gồm $6$ mặt:
\(\left( {ADD'A'} \right);\,\left( {DCC'D'} \right);\left( {BCC'B'} \right);\,\left( {ABB'A'} \right);\,\left( {ABCD} \right);\left( {A'B'C'D'} \right)\)
Hình hộp chữ nhật ABCD.A'B'C'D' không có mặt phẳng $\left( {AB'C'D} \right)$ nên đáp án D sai.
Hãy chọn câu sai. Hình hộp chữ nhật $ABCD.{\rm{ }}A'B'C'D'$ có
-
A.
$8$ đỉnh.
-
B.
$12$ cạnh.
-
C.
$6$ cạnh.
-
D.
$6$ mặt.
Đáp án : C
Hình hộp chữ nhật có \(12\) cạnh:
\(\begin{array}{l}AB;BC;CD;DA;A'B';C'D';\\B'C';D'A';AA';BB';CC';DD'\end{array}\)
Nên C sai.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ , chọn khẳng định đúng.
-
A.
\(AC'\) và \(DB'\) cắt nhau
-
B.
\(AC'\) và $BC$ cắt nhau
-
C.
$AC$ và $DB$ không cắt nhau
-
D.
$AB$ và $CD$ cắt nhau.
Đáp án : A
Ta có $AC'$ cắt $DB'$ vì $AD$ // $B'C'$ , $AD = B'C'$ nên $ADC'B'$ là hình bình hành, do đó $AC'$ cắt $DB'$ nên A đúng.
$AC'$ không cắt $BC$ vì chúng không có điểm chung nên B sai.
$AB$ và $CD$ song song nên chúng không cắt nhau nên D sai.
$AC$ và $BD$ cắt nhau nên C sai.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Gọi tên mặt phẳng chứa đường thẳng $A'B$ và $CD'$. Hãy chọn câu đúng .
-
A.
mp$\left( {ABB'A'} \right)\;\;\;$.
-
B.
mp $\left( {ADD'A'} \right)$.
-
C.
mp $\left( {DCC'D'} \right)\;\;\;$.
-
D.
mp $\left( {A'BCD'} \right)\;\;\;$.
Đáp án : D
Mặt phẳng chứa đường thẳng \(A'B\) và \(CD'\) là mặt phẳng đi qua bốn điểm \(A',\,B,\,C,\,D'\) hay chính là $mp \left( {A'BCD'} \right).$
Hãy kể tên những cạnh bằng nhau của hình hộp chữ nhật $ABCD.A'B'C'D'$.
Hãy chọn câu sai
-
A.
$AB = A'B'$.
-
B.
$DC = D'C'\;\;\;$.
-
C.
$AB{\rm{ }} = {\rm{ }}C'D'\;\;$.
-
D.
$DC{\rm{ }} = {\rm{ }}DD'$.
Đáp án : D
Các cạnh bằng nhau của hình hộp chữ nhật \(AA' = BB' = CC' = DD'\) ; \(AB = DC = A'B' = D'C'\) ;
\(AA' = BB' = CC' = DD'\) .
Nên D sai.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Có bao nhiêu cạnh cắt cạnh $AB$
-
A.
$4$.
-
B.
$3$.
-
C.
$2$.
-
D.
$5$.
Đáp án : A
Có bốn cạnh cắt $AB$ là $AD,AA',BC,BB'.$
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Có bao nhiêu cạnh song song với cạnh $AB$
-
A.
$4$.
-
B.
$3$.
-
C.
$2$.
-
D.
$5$.
Đáp án : B
Có ba cạnh song song với $AB$ là $A'B',CD,C'D'$ .
Trong các mặt của một hình hộp chữ nhật, tính số cặp mặt song song với nhau là
-
A.
$4$.
-
B.
$2$.
-
C.
$3$.
-
D.
$0$.
Đáp án : C
Có $3$ cặp mặt phẳng song song là mp \(\left( {ABB'A'} \right)\) và mp \(\left( {DCC'D'} \right)\) ; mp \(\left( {ABCD} \right)\) và mp \(\left( {A'B'C'D'} \right)\); mp \(\left( {ADD'A'} \right)\) và mp \(\left( {BCC'B'} \right)\)
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M,{\rm{ }}N,{\rm{ }}I,{\rm{ }}K$ theo thứ tự là trung điểm $AA',{\rm{ }}BB',{\rm{ }}CC',{\rm{ }}DD'$. Hãy chọn câu sai
-
A.
Bốn điểm $M,{\rm{ }}N,{\rm{ }}I,{\rm{ }}K$cùng thuộc một mặt phẳng.
-
B.
mp $\left( {MNIK} \right)$// mp $\left( {ABCD} \right)$.
-
C.
mp $\left( {MNIK} \right)$ // mp $\left( {A'B'C'D'} \right)$.
-
D.
mp $\left( {MNIK} \right)$ // mp $\left( {ABB'A'} \right)$.
Đáp án : D
Vì $M,{\rm{ }}N,{\rm{ }}I,{\rm{ }}K$ theo thứ tự là trung điểm $AA',{\rm{ }}BB',{\rm{ }}CC',{\rm{ }}DD'$ nên \(KM = IN;\,KM{\rm{//}}IN\)
Suy ra bốn điểm $M,{\rm{ }}N,{\rm{ }}I,{\rm{ }}K$ cùng thuộc một mặt phẳng.
Lại có \(KM{\rm{//}}AD{\rm{//}}A'D'\) nên mp $\left( {MNIK} \right)$// mp $\left( {ABCD} \right)$ và mp $\left( {MNIK} \right)$// mp $\left( {A'B'C'D'} \right)$
Ta thấy mp \(\left( {MNIK} \right)\) và mp \(\left( {ABB'A'} \right)\) cắt nhau theo đường thẳng \(MN\) nên chúng không song song.
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $O$ và $O'$ lần lượt là tâm \(ABCD;\,A'B'C'D'\) . Hai mp $(ACC'A')$ và mp $\left( {BDD'B'} \right)$ cắt nhau theo đường nào?
-
A.
$OO'$.
-
B.
$CC'$.
-
C.
$AD$.
-
D.
$AO$.
Đáp án : A
Tìm đoạn thẳng thuộc cả hai mặt phẳng.
Gọi $O$ là giao điểm của $AC$ và $BD$ . Ta có \(O \in AC\) nên \(O \in {\rm{mp}}\left( {ACC'A'} \right)\), \(O \in BD\) nên \(O \in {\rm{mp}}\left( {BDD'B'} \right)\), do đó $O$ thuộc cả hai mặt phẳng trên. (1)
Gọi \(O'\) là giao điểm của \(A'C'\) và \(B'D'\) .
Chứng minh tương tự, \(O'\) thuộc cả hai mặt phẳng trên. (2)
Từ (1) và (2) suy ra hai mặt phẳng $(ACC'A')$ và mp $\left( {BDD'B'} \right)$ cắt nhau theo đường thẳng \(OO'\) .
Cho hình lập phương $ABCD.A'B'C'D'$. Tính số đo góc \(AB'C\) .
-
A.
$90^\circ $.
-
B.
$45^\circ $.
-
C.
$30^\circ $.
-
D.
$60^\circ $.
Đáp án : D
Mối quan hệ giữa các cạnh trong hình hộp chữ nhật từ đó suy ra số đo góc.
Các tam giác $ABC,ABB',CBB'$ vuông cân nên $AC = AB' = B'C$ .
Tam giác $AB'C$ có ba cạnh bằng nhau nên là tam giác đều, suy ra \(\widehat {AB'C} = {60^0}\) .
Tình độ dài của một chiếc hộp hình lập phương, biết rằng nếu độ dài mỗi cạnh của hộp tang thêm $2\,cm$ thì diện tích phải sơn $6$ mặt bên ngoài của hộp đó tăng thêm $216\,c{m^2}$ .
-
A.
$4\,cm$.
-
B.
$8\,cm$.
-
C.
$6\,cm$.
-
D.
$5\,cm$.
Đáp án : B
+ Gọi độ dài hình lập phương là \(x\) , dựa vào dữ kiện đề bài để suy ra phương trình ẩn \(x\) .
+ Giải phương trình ta tìm được cạnh của hình lập phương
Diện tích phải sơn một mặt của hình hộp tăng thêm \(216:6 = 36\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Gọi độ dài cạnh của hình lập phương là $x\,\left( {cm} \right)$ , \(x > 0\)
Phương trình \({\left( {x + 2} \right)^2} - {x^2} = 36\)
\( \Leftrightarrow {x^2} + 4x + 4 - {x^2} = 36\)
\(\Leftrightarrow 4x = 32\)
\(\Leftrightarrow x = 8\) (TM )
Độ dài cạnh của chiếc hộp bằng $8cm$ .
Hình hộp chữ nhật có
-
A.
\(4\) mặt, \(8\) đỉnh, \(12\) cạnh
-
B.
\(6\) mặt, \(8\) đỉnh, \(12\) cạnh
-
C.
\(6\) mặt, \(12\) đỉnh, \(8\) cạnh
-
D.
\(8\) mặt, \(6\) đỉnh, \(12\) cạnh
Đáp án : B
Đặc điểm của hình hộp chữ nhật
Quan sát hình vẽ, hình hộp chữ nhật \(ABCD.A'B'C'D'\)có:
+ \(6\) mặt: \(ABCD,\,\,A'B'C'D',\,\,ADD'A',\)\(BCC'B',\,\,ABB'A',\,\,DCD'C'\)
+ \(8\) đỉnh: \(A,\,\,B,\,\,C,\,\,D,\,\,A',\,\,B',\,\,C',\,\,D'\)
+ \(12\) cạnh: \(AB,\,\,A'B',\,\,BC,\,\,B'C',\,\,CD,\,\,C'D',\,\,DA,\)\(D'A',\,\,AA',\,\,BB',\,\,CC',\,\,DD'\)
Vậy hình hộp chữ nhật có \(6\) mặt, \(8\) đỉnh, \(12\) cạnh.
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Phát biểu nào sau đây đúng?
-
A.
\(AB = CD\)
-
B.
\(B'C' = CC'\)
-
C.
\(CD = AD\)
-
D.
\(BC = B'B'\)
Đáp án : A
Đặc điểm của hình hộp chữ nhật
Quan sát hình hộp chữ nhật \(ABCD.A'B'C'D'\), ta thấy:
+ \(AB = CD = A'B' = C'D'\)
+ \(B'C' = BC = A'D' = AD\)
\( \Rightarrow \) Đáp án A đúng và đáp án B, C, D sai.
Cho hình lập phương \(ABCD.A'B'C'D'\). Phát biểu nào sau đây là đúng?
-
A.
6 mặt là hình chữ nhật
-
B.
6 mặt là hình vuông
-
C.
6 mặt là hình thoi
-
D.
8 mặt là hình vuông
Đáp án : B
Đặc điểm của hình lập phương
Hình lập phương có 6 mặt là hình vuông bằng nhau.