Bài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 3 Toán 11 Chân trời sáng tạo


Bài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}}\);

b) \(\mathop {\lim }\limits_{x \to {2^ +}} \frac{x}{{2 - x}}\).

Phương pháp giải - Xem chi tiết

Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.

Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.

Lời giải chi tiết

a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} =  + \infty \)

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) =  - \mathop {\lim }\limits_{x \to {2^ + }} x =  - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} =  +\infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} =  - \infty \)


Cùng chủ đề:

Bài 9 trang 144 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 10 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 10 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 10 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 10 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 10 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 10 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 11 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 11 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo