Bài 25 trang 19 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số


Bài 25 trang 19 SGK Toán 9 tập 2

Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0.

Đề bài

Ta biết rằng: Một đa thức bằng đa thức \(0\) khi và chỉ khi tất cả các hệ số của nó bằng \(0\). Hãy tìm các giá trị của \(m\) và \(n\) để đa thức sau (với biến số \(x\)) bằng đa thức \(0\):

\(P(x) = (3m - 5n + 1)x + (4m - n -10)\).

Phương pháp giải - Xem chi tiết

+) Đa thức \(P(x)=ax+b =0 (đa\ thức\ 0) \Leftrightarrow \left\{ \begin{matrix} a=0 & & \\ b = 0 & & \end{matrix}\right.\).

+) Giải hệ phương trình trên ta được giá trị cần tìm.

Lời giải chi tiết

Ta có

\(P(x) = (3m - 5n + 1)x + (4m - n -10)\) có hai hệ số là \(a=(3m - 5n + 1)  \) và \(b=(4m - n -10)\).

Do đó \(P(x) = 0 \Leftrightarrow \left\{\begin{matrix} 3m - 5n +1 = 0 & & \\ 4m - n -10=0& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3m - 5n = -1 & & \\ 4m - n =10& & \end{matrix}\right.  \Leftrightarrow \left\{\begin{matrix} 3m - 5n = -1 & & \\ 20m - 5n =50& & \end{matrix}\right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} 3m - 5n - \left( {20m - 5n} \right) = - 1 - 50\\ 4m - n = 10 \end{array} \right.\)

\(\Leftrightarrow \left\{\begin{matrix} -17m = -51 & & \\ 4m - n =10& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} m = 3 & & \\ -n = 10 - 4.3& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m = 3 & & \\ n = 2& & \end{matrix}\right.\)

Vậy \(m=3,\ n=2\) thì đa thức \(P(x) =0\).


Cùng chủ đề:

Bài 24 trang 76 SGK Toán 9 tập 2
Bài 24 trang 84 SGK Toán 9 tập 1
Bài 24 trang 111 SGK Toán 9 tập 1
Bài 24 trang 119 SGK Toán 9 tập 2
Bài 25 trang 16 SGK Toán 9 tập 1
Bài 25 trang 19 SGK Toán 9 tập 2
Bài 25 trang 52 SGK Toán 9 tập 2
Bài 25 trang 55 SGK Toán 9 tập 1
Bài 25 trang 76 SGK Toán 9 tập 2
Bài 25 trang 84 SGK Toán 9 tập 1
Bài 25 trang 111 SGK Toán 9 tập 1