Bài 27 trang 115 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 6. Tính chất của hai tiếp tuyến cắt nhau


Bài 27 trang 115 SGK Toán 9 tập 1

Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn.

Đề bài

Từ một điểm \(A\) nằm bên ngoài đường tròn \((O)\), kẻ các tiếp tuyến \(AB,\ AC\) với đường tròn (\(B,\ C\) là các tiếp điểm). Qua điểm \(M\) thuộc cung nhỏ \(BC\), kẻ tiếp tuyến với đường tròn \(O\), nó cắt các tiếp tuyến \(AB\) và \(AC\) theo thứ tự ở \(D\) và \(E\). Chứng minh rằng chu vi tam giác \(ADE\) bằng \(2AB\).

Phương pháp giải - Xem chi tiết

+) Sử dụng tính chất hai tiếp tuyến cắt nhau: cho \((O;R)\) với hai tiếp tuyến \(AB,\ AC\) tại \(B,\ C\) của \((O)\) khi đó \(AB=AC\).

+) Chu vi tam giác \(ABC\) là: \(C_{\Delta{ABC}}=AB+BC+AC\).

Lời giải chi tiết

Vì \(AB,\ AC\) là hai tiếp tuyến của \((O)\) lần lượt tại \(B,\ C\). Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \(AB=AC\)

Vì \(DB,\ DM\) là hai tiếp tuyến của \((O)\) lần lượt tại \(B,\ M\). Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \(DB=DM\)

Vì \(EM,\ EC\) là hai tiếp tuyến của \((O)\) lần lượt tại \(M,\ C\). Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \(EM=EC\)

Chu vi tam giác \(ADE\) là: \(AD+DE+EA=AD+(DM+ME)+EA\)

\(=(AD+DM)+(ME+EA)\)

\(=(AD+DB)+(EC+EA)\) (vì \(DM=DB\) và \(ME=EC\))

\(=AB+AC=2AB\) (vì \(AC=AB\)).


Cùng chủ đề:

Bài 27 trang 20 SGK Toán 9 tập 2
Bài 27 trang 53 SGK Toán 9 tập 2
Bài 27 trang 58 SGK Toán 9 tập 1
Bài 27 trang 79 SGK Toán 9 tập 2
Bài 27 trang 88 SGK Toán 9 tập 1
Bài 27 trang 115 SGK Toán 9 tập 1
Bài 27 trang 119 SGK Toán 9 tập 2
Bài 28 trang 18 SGK Toán 9 tập 1
Bài 28 trang 22 SGK Toán 9 tập 2
Bài 28 trang 53 SGK Toán 9 tập 2
Bài 28 trang 58 SGK Toán 9 tập 1