Bài 29 trang 79 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung


Bài 29 trang 79 SGK Toán 9 tập 2

Cho hai đường tròn (O) và (O') cắt nhau tại A và B

Đề bài

Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến kẻ từ \(A\) đối với đường tròn (O') cắt (O) tại \(C\) đối với đường tròn \((O)\) cắt \((O')\) tại \(D\).

Chứng minh rằng \(\widehat {CBA} = \widehat {DBA}\).

Phương pháp giải - Xem chi tiết

+) Trong một đường tròn, góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung thì có số đo bằng nhau và bằng nửa số đo cung bị chắn.

+) Chỉ ra hai tam giác \(ABD\) và \(CBA\)  đồng dạng để suy ra hai góc bằng nhau.

Lời giải chi tiết

Xét đường tròn \( (O')\) có \(\widehat {ADB}\) là góc nội tiếp chắn cung \(\overparen{AmB}\)

\(\widehat {CAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(\overparen{AmB}\)

\(\Rightarrow\) \(\widehat {ADB} = \widehat {CAB}\) (1)

Xét đường tròn \((O)\) có \(\widehat {ACB}\) là góc nội tiếp chắn cung \(\overparen{AnB}\)

\(\widehat{BAD}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(\overparen{AnB}\)

\(\Rightarrow\) \(\widehat {ACB} = \widehat {BAD}\) (2)

Xét tam giác \(ABD\) và \(CBA\) có:

\(\widehat {CAB} = \widehat {ADB}\) (theo (1))

\(\widehat {ACB} = \widehat {BAD}\) (theo (2))

nên \(\Delta ACB \backsim \Delta DAB\left( {g - g} \right)  \) suy ra \(\widehat {CBA} = \widehat {DBA}\) (hai góc tương ứng) (đpcm).


Cùng chủ đề:

Bài 28 trang 120 SGK Toán 9 tập 2
Bài 29 trang 19 SGK Toán 9 tập 1
Bài 29 trang 22 SGK Toán 9 tập 2
Bài 29 trang 54 SGK Toán 9 tập 2
Bài 29 trang 59 SGK toán 9 tập 1
Bài 29 trang 79 SGK Toán 9 tập 2
Bài 29 trang 89 SGK Toán 9 tập 1
Bài 29 trang 116 SGK Toán 9 tập 1
Bài 29 trang 120 SGK Toán 9 tập 2
Bài 30 trang 19 SGK Toán 9 tập 1
Bài 30 trang 22 SGK Toán 9 tập 2