Bài 3.21 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\) là
Đề bài
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\) là
A. \(4.\)
B. \( - 4.\)
C. \( + \infty .\)
D. \( - \infty .\)
Phương pháp giải - Xem chi tiết
Đây là giới hạn một bên của hàm số
Tính giới hạn của tử số và giới hạn của mẫu số rồi áp dụng quy tắc tính giới hạn của một thương
\(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty \) và \(\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \), với mọi số thực \(a\).
Lời giải chi tiết
Ta có \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {4x - 4} \right) = 4.2 - 4 = 4 > 0\)
Với \(x < 2 \Rightarrow x - 2 < 0\) và \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} \right) = 0\) do đó \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}} = - \infty \)
Đáp án D