Bài 3. 22 trang 81 SGK Toán 11 tập 1 - Cùng khám phá — Không quảng cáo

Toán 11, giải toán 11 cùng khám phá Bài tập cuối chương 3 Toán 11 Cùng khám phá


Bài 3.22 trang 81 SGK Toán 11 tập 1 - Cùng khám phá

\(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x + {x^2}}}{x}\) là

Đề bài

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2 - x + {x^2}}}{x}\) là

A. \( - \infty .\)

B. \( + \infty .\)

C. \(0.\)

D. \(1.\)

Phương pháp giải - Xem chi tiết

Đây là giới hạn của hàm số tại vô cực

Thực hiện chia cả tử và mẫu số cho lũy thừa của \(x\) với số mũ lớn nhất

Áp dụng các công thức sau: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{c}{{{x^k}}} = 0;\,\mathop {\lim }\limits_{x \to  - \infty } \frac{c}{{{x^k}}} = 0\)

Lời giải chi tiết

Chia cả tử và mẫu của hàm số cho \({x^2}\) ta được

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2 - x + {x^2}}}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\frac{2}{{{x^2}}} - \frac{1}{x} + 1}}{{\frac{1}{x}}}\)

Ta có \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{2}{{{x^2}}} - \frac{1}{x} + 1} \right) = 1 > 0\)

Khi \(x \to  - \infty \) thì \(\mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x} = 0\) và \(\frac{1}{x} < 0\) do đó \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\frac{2}{{{x^2}}} - \frac{1}{x} + 1}}{{\frac{1}{x}}} =  - \infty \)

Vậy \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{2 - x + {x^2}}}{x} =  - \infty \)

Đáp án A


Cùng chủ đề:

Bài 3. 17 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 19 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 20 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 21 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 22 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 23 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 24 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Bài 3. 25 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 1 trang 94 SGK Toán 11 tập 1 - Cùng khám phá
Bài 4. 2 trang 94 SGK Toán 11 tập 1 - Cùng khám phá