Dạng 3: Bài toán hai tỉ số Toán nâng cao lớp 4
Tải vềMột hình chữ nhật có chiều dài bằng 3/2 chiều rộng. Nếu tăng chiều rộng lên 5 m và giảm chiều dài đi 5m thì chiều dài bằng 2/3 chiều rộng
Phương pháp giải: Bước 1: Đọc đề bài, xác định đại lượng không bị thay đổi và đại lượng bị thay đổi. Bước 2: So sánh đại lượng bị thay đổi với đại lượng không bị thay đổi (ở hai thời điểm khác nhau). Bước 3: Tìm phân số ứng với số đơn vị bị thay đổi. Bước 4: Tìm đại lượng không bị thay đổi và đại lượng bị thay đổi |
Loại 1: Tổng hai số không thay đổi
Ví dụ 1 : Một hình chữ nhật có chiều dài bằng $\frac{3}{2}$ chiều rộng. Nếu tăng chiều rộng lên 5 m và giảm chiều dài đi 5m thì chiều dài bằng $\frac{2}{3}$ chiều rộng. Tính diện tích của hình chữ nhật ban đầu.
Giải
Vì nửa chu vi của hình chữ nhật không thay đổi nên ta chọn nửa chu vi làm đơn vị.
Chiều rộng ban đầu so với nửa chu vi là: $\frac{2}{{2 + 3}} = \frac{2}{5}$ (nửa chu vi)
Chiều rộng sau khi tăng thêm 5m so với nửa chu vi là: $\frac{3}{{2 + 3}} = \frac{3}{5}$ (nửa chu vi)
Phân số chỉ 5m là:
$\frac{3}{5} - \frac{2}{5} = \frac{1}{5}$ (nửa chu vi)
Nửa chu vi của hình chữ nhật là:
5 x 5 = 25 (m)
Chiều rộng ban đầu là:
25 : (2 + 3) x 2 = 10 (m)
Chiều dài ban đầu là:
25 - 10 = 15 (m)
Diện tích của hình chữ nhật ban đầu là:
15 x 10 = 150 (m 2 )
Đáp số: 150 m 2
Ví dụ 2 : Một lớp học có số học sinh nam gấp 2 lần số học sinh nữ. Nếu giảm 4 học sinh nam đi và tăng 4 học sinh nữ lên thì số học sinh nam lúc này bằng $\frac{{16}}{{11}}$ số học sinh nữ. Tính số học sinh nữ ban đầu.
Giải
Vì tổng số học sinh cả lớp không thay đổi nên ta chọn tổng số học sinh làm đơn vị.
Ban đầu, số học sinh nam so với số học sinh cả lớp là: $\frac{2}{{2 + 1}} = \frac{2}{3}$ (tổng số học sinh)
Sau khi giảm đi 4 học sinh, số học sinh nam so với số học sinh cả lớp là: $\frac{{16}}{{16 + 11}} = \frac{{16}}{{27}}$ (tổng số học sinh)
Phân số chỉ 4 học sinh là:
$\frac{2}{3} - \frac{{16}}{{27}} = \frac{2}{{27}}$ (tổng số học sinh)
Tổng số học sinh của lớp là:
$4:\frac{2}{{27}} = 54$ (học sinh)
Số học sinh nữ ban đầu là:
54 : (2 + 1) = 18 (học sinh)
Đáp số: 18 học sinh
Loại 2: Hiệu hai số không thay đổi
Ví dụ 1: Hiện nay tuổi con bằng $\frac{1}{6}$ tuổi bố. 8 năm nữa, tuổi bố bằng $\frac{{22}}{7}$ tuổi con. Hỏi hiện nay bố bao nhiêu tuổi, con bao nhiêu tuổi?
Giải
Vì hiệu số tuổi của bố và con không thay đổi nên ta chọn hiệu số tuổi làm đơn vị.
Hiện nay, tuổi bố so với hiệu số tuổi của bố và con là $\frac{6}{{6 - 1}} = \frac{6}{5}$ (hiệu số tuổi)
8 năm nữa, tuổi bố so với hiệu số tuổi của bố và con là: $\frac{{22}}{{22 - 7}} = \frac{{22}}{{15}}$ (hiệu số tuổi)
Phân số chỉ 8 năm là:
$\frac{{22}}{{15}} - \frac{6}{5} = \frac{4}{{15}}$ (hiệu số tuổi)
Bố hơn con số tuổi là:
$8:\frac{4}{{15}} = 30$ (tuổi)
Hiện nay, tuổi của bố là:
30 : (6 - 1) x 6 = 36 (tuổi)
Hiện nay, tuổi của con là:
36 - 30 = 6 (tuổi)
Đáp số: Bố 36 tuổi; Con 6 tuổi
Ví dụ 2 : Một thư viện có số sách tham khảo bằng $\frac{4}{7}$ số sách giáo khoa. Nếu thư viện nhập thêm mỗi loại 35 quyển nữa thì số sách tham khảo bằng $\frac{{33}}{{56}}$ số sách giáo khoa. Tính số sách giáo khoa ban đầu của thư viện.
Giải
Vì hiệu số quyển sách không thay đổi nên ta chọn hiệu số quyển sách làm đơn vị.
Ban đầu, số sách giáo khoa so với hiệu số quyển sách là: $\frac{7}{{7 - 4}} = \frac{7}{3}$ (hiệu số quyển sách)
Sau khi nhập thêm mỗi loại 35 quyển thì số sách giáo khoa so với hiệu số quyển sách là:
$\frac{{56}}{{56 - 33}} = \frac{{56}}{{23}}$ (hiệu số quyển sách)
Phân số chỉ 35 quyển sách là:
$\frac{{56}}{{23}} - \frac{7}{3} = \frac{7}{{69}}$ (hiệu số quyển sách)
Sách giáo khoa hơn sách tham khảo số quyển là:
$35:\frac{7}{{69}} = 345$ (quyển)
Số sách giáo khoa ban đầu là:
345 : (7 - 4) x 7 = 805 (quyển)
Đáp số: 805 quyển
Loại 3: Một trong hai đại lượng không thay đổi
Ví dụ 1: Một lớp học có số học sinh nữ bằng $\frac{2}{3}$ số học sinh nam. Sang học kì 2, có thêm 5 em học sinh nữ chuyển vào, lúc này số học sinh nam bằng $\frac{6}{5}$ số học sinh nữ. hỏi ban đầu lớp đó có bao nhiêu học sinh nữ.
Giải
Vì số học sinh nam không thay đổi nên ta chọn số học sinh nam làm đơn vị.
Ban đầu, số học sinh nữ so với số học sinh nam là: $\frac{2}{3}$ (học sinh nam)
Sau khi có thêm 5 học sinh nữ thì số học sinh nữ so với số học sinh nam là: $\frac{5}{6}$ (học sinh nam)
Phân số chỉ 5 học sinh là:
$\frac{5}{6} - \frac{2}{3} = \frac{1}{6}$ (học sinh nam)
Số học sinh nam ban là:
$5:\frac{1}{6} = 30$ (học sinh)
Số học sinh nữ ban đầu là:
$30 \times \frac{2}{3} = 20$ (học sinh)
Đáp số: 20 học sinh
Bài tập áp dụng:
Trong một kì thi học sinh giỏi, người ta thấy số học sinh nam bằng $\frac{4}{5}$ số học sinh nữ. Nếu thay 12 bạn học sinh nữ bằng 12 bạn học sinh nam thì số học sinh nữ bằng $\frac{{37}}{{35}}$ số học sinh nam. Tính số học sinh nam ban đầu.
Một đàn vịt có một số con trên bờ và một số con dưới ao. Lúc đầu số vịt trên bờ bằng $\frac{1}{4}$ số vịt dưới ao. Sau khi có 2 con vịt từ trên bờ nhảy xuống ao thì số vịt trên bờ bằng $\frac{1}{5}$ số vịt dưới ao. Hỏi đàn vịt có bao nhiêu con vịt?
Nhà bác Tân nuôi một đàn gà và vịt. Lúc đầu bác đếm thấy số gà nhiều gấp 2 lần số vịt. Sau đó bác đem mỗi loại 40 con ra chợ bán thì số vịt lúc này lại bằng $\frac{5}{{14}}$ số gà. Hỏi ban đầu nhà bác Tân có bao nhiêu con cả gà và vịt?
Tìm hai số biết số lớn bằng $\frac{5}{4}$ số bé. Sau khi cùng bớt ở mỗi số đi 7 đơn vị thì số bé bằng $\frac{3}{4}$ số lớn. Tìm hai số lúc đầu.
Một hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Nếu giảm chiều dài đi 5m thì chiều dài sẽ bằng $\frac{5}{2}$ chiều rộng. Hỏi diện tích của hình chữ nhật ban đầu là bao nhiêu?