Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Dãy số có giới hạn vô cực


Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Tìm giới hạn của các dãy số (un) với

Tìm giới hạn của các dãy số (u n ) với

LG a

\({u_n} = - 2{n^3} + 3n + 5\)

Lời giải chi tiết:

Ta có:  \({u_n} = {n^3}\left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right)\)

Vì  \({{\mathop{\rm limn}\nolimits} ^3} = + \infty \) và \(\lim \left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right) = - 2 < 0\)

Nên  \(\lim {u_n} = - \infty \)

LG b

\({u_n} = \sqrt {3{n^4} + 5{n^3} - 7n} \)

Lời giải chi tiết:

Ta có:  \({u_n} = \sqrt {{n^4}\left( {3 + \frac{5}{n} - \frac{7}{{{n^3}}}} \right)}  \) \(= {n^2}\sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} \)

Vì  \(\lim {n^2} = + \infty \) và \(\lim \sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} = \sqrt 3 > 0\)

Nên  \(\lim {u_n} = + \infty \)


Cùng chủ đề:

Câu 11 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 11 trang 80 SGK Hình học 11 Nâng cao
Câu 11 trang 96 SGK Hình học 11 Nâng cao
Câu 11 trang 106 SGK Đại số và Giải tích 11 Nâng cao
Câu 11 trang 124 SGK Hình học 11 Nâng cao
Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 11 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 11 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 18 SGK Hình học 11 Nâng cao
Câu 12 trang 51 SGK Hình học 11 Nâng cao