Câu 11 trang 80 SGK Hình học 11 Nâng cao
Cho tứ diện đều ABCD có cạnh bằng a, điểm M trên cạnh AB sao cho AM = m (0 < m < a). Khi đó, diện tích thiết diện của hình tứ diện khi cắt bởi mặt phẳng qua M và song song với mp(ACD) là:
Đề bài
Cho tứ diện đều ABCD có cạnh bằng a, điểm M trên cạnh AB sao cho AM = m (0 < m < a). Khi đó, diện tích thiết diện của hình tứ diện khi cắt bởi mặt phẳng qua M và song song với mp(ACD) là:
A. m2√34
B. (a−m)2√22
C. (a+m)24
D. (a−m)2√34
Lời giải chi tiết
Vẽ MN // AC (N ϵ BC)
MP // AD (P ϵ BD)
Thiết diện cần tìm là ΔMNP
Ta có: ΔMNP∽ tỉ số {{MP} \over {AD}} = {{BM} \over {AB}} = {{a - m} \over a}
\Rightarrow \frac{{{S_{MNP}}}}{{{S_{ACD}}}} = {\left( {\frac{{MP}}{{AD}}} \right)^2} = {\left( {\frac{{a - m}}{a}} \right)^2}
\Rightarrow {S_{MNP}} = {\left( {{{a - m} \over a}} \right)^2}.{S_{ABC}}
= {\left( {{{a - m} \over a}} \right)^2}.{{{a^2}\sqrt 3 } \over 4} = {\left( {a - m} \right)^2}{{\sqrt 3 } \over 4}
Chọn (D)