Câu 17 trang 103 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3: Đường thẳng vuông góc với mặt phẳng


Câu 17 trang 103 SGK Hình học 11 Nâng cao

Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.

Cho hình tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc.

LG a

Chứng minh tam giác ABC có ba góc nhọn.

Lời giải chi tiết:

Đặt a = OA, b = OB, c = OC. Ta có:

\(AB = \sqrt {{a^2} + {b^2}} ,BC = \sqrt {{b^2} + {c^2}} ,\) \(AC = \sqrt {{a^2} + {c^2}} \)

Áp dụng định lí cosin trong tam giác ABC ta có :

\(\cos A = {{A{B^2} + A{C^2} - B{C^2}} \over {2AB.AC}} \) \( = {{{a^2} + {b^2} + {a^2} + {c^2} - {b^2} - {c^2}} \over {2AB.AC}} = {{2{a^2}} \over {2AB.AC}} > 0\)

⇒ A nhọn. Tương tự B, C là các góc nhọn.

Vậy ΔABC có ba góc nhọn.

LG b

Chứng minh rằng hình chiếu H của điểm O trên mp(ABC) trùng với trực tâm tam giác ABC.

Lời giải chi tiết:

LG c

Chứng minh rằng \({1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)

Lời giải chi tiết:


Cùng chủ đề:

Câu 16 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 19 SGK Hình học 11 Nâng cao
Câu 17 trang 29 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 55 SGK Hình học 11 Nâng cao
Câu 17 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 103 SGK Hình học 11 Nâng cao
Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 204 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 19 SGK Hình học 11 Nâng cao