Processing math: 0%

Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Dãy số có giới hạn vô cực


Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

Tìm các giới hạn sau :

LG a

lim

Phương pháp giải:

Đặt lũy thừa bậc cao nhất của n ra làm nhân tử chung và sử dụng các quy tắc tính giới hạn.

Lời giải chi tiết:

\eqalign{ & \lim \left( {3{n^3} - 7n + 11} \right) \cr &= \lim {n^3}\left( {3 - {7 \over {{n^2}}} + {{11} \over {{n^3}}}} \right) = + \infty \cr & \text{ vì }\,{{\mathop{\rm limn}\nolimits} ^3} = + \infty \cr &\text{ và }\lim \left( {3 - {7 \over {{n^2}}} + {{11} \over {{n^3}}}} \right) = 3 > 0 \cr}

LG b

\lim \sqrt {2{n^4} - {n^2} + n + 2}

Lời giải chi tiết:

\eqalign{ & \lim \sqrt {2{n^4} - {n^2} + n + 2} \cr & = \lim \sqrt {{n^4}\left( {2 - \frac{1}{{{n^2}}} + \frac{1}{{{n^3}}} + \frac{2}{{{n^4}}}} \right)} \cr &= \lim {n^2}.\sqrt {2 - {1 \over {{n^2}}} + {1 \over {{n^3}}} + {2 \over {{n^4}}}} = + \infty \cr & \text{ vì }\;\lim {n^2} = + \infty \cr & \text{ và }\lim \sqrt {2 - {1 \over {{n^2}}} + {1 \over {{n^3}}} + {2 \over {{n^4}}}} = \sqrt 2 > 0 \cr}

LG c

\lim \root 3 \of {1 + 2n - {n^3}}

Lời giải chi tiết:

\eqalign{ & \lim \root 3 \of {1 + 2n - {n^3}} \cr & = \lim \sqrt[3]{{{n^3}\left( {\frac{1}{{{n^3}}} + \frac{2}{{{n^2}}} - 1} \right)}}\cr &= \lim n\root 3 \of {{1 \over {{n^3}}} + {2 \over {{n^2}}} - 1} = - \infty \cr & \text{ vì }\lim n = + \infty \cr &\text{ và }\lim \root 3 \of {{1 \over {{n^3}}} + {2 \over {{n^2}}} - 1} = - 1 < 0 \cr}

LG d

\lim \sqrt {{{2.3}^n} - n + 2} .

Phương pháp giải:

Đặt 3^n ra làm nhân tử chung và tính giới hạn.

Chú ý sử dụng giới hạn đã chứng minh ở bài tập 4 trang 130

Lời giải chi tiết:

\sqrt {{{2.3}^n} - n + 2} = \lim \sqrt {{3^n}\left( {2 - \frac{n}{{{3^n}}} + \frac{2}{{{3^n}}}} \right)}   = {\left( {\sqrt 3 } \right)^n}\sqrt {2 - {n \over {{3^n}}} + {2 \over {{3^n}}}} với mọi n.

\lim {n \over {{3^n}}} = 0 (xem bài tập 4) và  \lim {2 \over {{3^n}}} = 0

Nên  \lim \sqrt {2 - {n \over {{3^n}}} + {2 \over {{3^n}}}} = \sqrt 2 > 0

Ngoài ra  \lim {\left( {\sqrt 3 } \right)^n} = + \infty

Do đó  \lim \sqrt {{{2.3}^n} - n + 2} = + \infty


Cùng chủ đề:

Câu 17 trang 29 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 55 SGK Hình học 11 Nâng cao
Câu 17 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 103 SGK Hình học 11 Nâng cao
Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 204 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 19 SGK Hình học 11 Nâng cao
Câu 18 trang 29 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 55 SGK Hình học 11 Nâng cao