Câu 18 trang 29 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Phương trình lượng giác cơ bản


Câu 18 trang 29 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Giải các phương trình sau:

LG a

\(\tan 3x = \tan {{3\pi } \over 5}\)

Lời giải chi tiết:

\(\tan 3x = \tan {{3\pi } \over 5} \Leftrightarrow 3x = {{3\pi } \over 5} + k\pi \)

\(\Leftrightarrow x = {\pi \over 5} + k{\pi \over 3},k \in\mathbb Z\)

LG b

\(\tan(x – 15^0) = 5\)

Lời giải chi tiết:

\(\begin{array}{l} \tan \left( {x - {{15}^0}} \right) = 5\\ \Leftrightarrow x - {15^0} = \arctan 5 + k{180^0}\\ \Leftrightarrow x = {15^0} + \arctan 5 + k{180^0},k \in\mathbb Z \end{array}\)

Cách trình bày khác:

\(\tan(x – 15^0) = 5\)

\(⇔ x = α + 15^0+ k180^0\),

trong đó \(\tan α = 5\) (chẳng hạn, có thể chọn \(α ≈ 78^041’24”\) nhờ dùng máy tính bỏ túi)

LG c

\(\tan \left( {2x - 1} \right) = \sqrt 3 \)

Lời giải chi tiết:

\(\eqalign{ & \tan \left( {2x - 1} \right) = \sqrt 3 \cr&\Leftrightarrow \tan \left( {2x - 1} \right) = \tan {\pi \over 3} \cr & \Leftrightarrow 2x - 1 = {\pi \over 3} + k\pi \cr&\Leftrightarrow x = {\pi \over 6} + {1 \over 2} + k{\pi \over 2};k \in\mathbb Z \cr} \)

LG d

\(\cot 2x = \cot \left( { - {1 \over 3}} \right)\)

Lời giải chi tiết:

\(\cot 2x = \cot \left( { - {1 \over 3}} \right) \)

\(\Leftrightarrow 2x = - {1 \over 3} + k\pi \)

\(\Leftrightarrow x = - {1 \over 6} + k{\pi \over 2},k \in\mathbb Z\)

LG e

\(\cot \left( {{x \over 4} + 20^\circ } \right) = - \sqrt 3 \)

Lời giải chi tiết:

\(\eqalign{ & \cot \left( {{x \over 4} + 20^\circ } \right) = - \sqrt 3\cr& \Leftrightarrow \cot \left( {{x \over 4} + 20^\circ } \right) = \cot \left( { - 30^\circ } \right) \cr & \Leftrightarrow {x \over 4} + 20^\circ = - 30^\circ + k180^\circ \cr&\Leftrightarrow x = - 200^\circ + k720^\circ ,k \in\mathbb Z \cr} \)

LG f

\(\cot 3x = \tan {{2\pi } \over 5}\)

Lời giải chi tiết:

\(\cot 3x = \tan {{2\pi } \over 5}\)

\(\Leftrightarrow \cot 3x = \cot \left( {{\pi \over 2} - {{2\pi } \over 5}} \right)\)\( = \cot \frac{\pi }{{10}}\)

\(\Leftrightarrow 3x = {\pi \over {10}} + k\pi \)

\(\Leftrightarrow x = {\pi \over {30}} + k.{\pi \over 3},k \in\mathbb Z \)


Cùng chủ đề:

Câu 17 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 143 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 204 SGK Đại số và Giải tích 11 Nâng cao
Câu 17 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 19 SGK Hình học 11 Nâng cao
Câu 18 trang 29 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 55 SGK Hình học 11 Nâng cao
Câu 18 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 103 SGK Hình học 11 Nâng cao
Câu 18 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 143 SGK Đại số và Giải tích 11 Nâng cao