Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Cấp số cộng


Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao

Trên tia Ox

Đề bài

Trên tia Ox lấy các điểm A 1 , A 2 , …, A n , … sao cho với mỗi số nguyên dương n, OA n = n. Trong cùng một nửa mặt phẳng có bờ là đường thẳng chứa tia Ox, vẽ các nửa đường tròn đường kính OA n , n = 1, 2, … . Kí hiệu u 1 là diện tích của nửa hình tròn đường kính OA 1 và với mỗi n ≥ 2, kí hiệu u n là diện tích của hình giới hạn bởi nửa đường tròn đường kính OA n – 1 , nửa đường tròn đường kính OA n và tia Ox (h 3.3). Chứng minh rằng dãy số (u n ) là một cấp số cộng. Hãy xác định công sai của cấp số cộng đó.

Lời giải chi tiết

Với \(n ≥ 2\) ta có :

Diện tích nửa đường tròn đường kính \(OA_n\) là: \({S_n} = \frac{1}{2}\pi .{\left( {\frac{{O{A_n}}}{2}} \right)^2} = \frac{1}{8}\pi {n^2}\)

Diện tích nửa đường tròn đường kính \(OA_{n-1}\) là: \({S_{n-1}} = \frac{1}{2}\pi .{\left( {\frac{{O{A_{n-1}}}}{2}} \right)^2} = \frac{1}{8}\pi {(n-1)^2}\)

Do đó,

\(\eqalign{ & {u_n} ={S_n} - {S_{n-1}}\cr& = \frac{1}{8}\pi {n^2} - \frac{1}{8}\pi {\left( {n - 1} \right)^2} \cr & = {1 \over 8}\pi \left[ {\left( {{n^2} - {{\left( {n - 1} \right)}^2}} \right)} \right] \cr & = \frac{1}{8}\pi \left( {{n^2} - {n^2} + 2n - 1} \right)\cr&= {{\left( {2n - 1} \right)\pi } \over 8}\,\left( {n \ge 2} \right) \cr & \Rightarrow {u_{n + 1}} - {u_n} \cr&= {{2n + 1} \over 8}\pi - {{\left( {2n - 1} \right)} \over 8}\pi \cr&= {\pi \over 4},\forall n \ge 2 \cr} \)

Mặt khác

\({u_2} - {u_1} = {{3\pi } \over 8} - {\pi \over 8} = {\pi \over 4}\)

Vậy  \({u_{n + 1}} - {u_n} = {\pi \over 4}\;\forall n \in\mathbb N^*\)

Do đó (u n ) là cấp số cộng với công sai  \(d = {\pi \over 4}.\)


Cùng chủ đề:

Câu 20 trang 23 SGK Hình học 11 Nâng cao
Câu 20 trang 29 SGK Đại số và Giải tích 11 Nâng cao
Câu 20 trang 55 SGK Hình học 11 Nâng cao
Câu 20 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 20 trang 103 SGK Hình học 11 Nâng cao
Câu 20 trang 114 SGK Đại số và Giải tích 11 Nâng cao
Câu 20 trang 143 SGK Đại số và Giải tích 11 Nâng cao
Câu 20 trang 204 SGK Đại số và Giải tích 11 Nâng cao
Câu 20 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 21 trang 23 SGK Hình học 11 Nâng cao
Câu 21 trang 29 SGK Đại số và Giải tích 11 Nâng cao