Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 4. Định nghĩa và một số định lí về giới hạn của hàm


Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

Tìm các giới hạn sau :

LG a

\(\mathop {\lim }\limits_{x \to 2} \left( {3{x^2} + 7x + 11} \right)\)

Phương pháp giải:

Thay x vào hàm số suy ra giới hạn.

Lời giải chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to 2} \left( {3{x^2} + 7x + 11} \right) \cr &= \mathop {\lim }\limits_{x \to 2} 3{x^2} + \mathop {\lim }\limits_{x \to 2} 7x + \mathop {\lim }\limits_{x \to 2} 11 \cr & = {3.2^2} + 7.2 + 11 = 37 \cr} \)

LG b

\(\mathop {\lim }\limits_{x \to 1} {{x - {x^3}} \over {\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 1} {{x - {x^3}} \over {\left( {2x - 1} \right)\left( {{x^4} - 3} \right)}} \) \( = \frac{{1 - {1^3}}}{{\left( {2.1 - 1} \right)\left( {{1^4} - 3} \right)}}\) \(= {0 \over { - 2}} = 0\)

LG c

\(\mathop {\lim }\limits_{x \to 0} x\left( {1 - {1 \over x}} \right)\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 0} x\left( {1 - {1 \over x}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {x - 1} \right) = - 1\)

LG d

\(\mathop {\lim }\limits_{x \to 9} {{\sqrt x - 3} \over {9x - {x^2}}}\)

Phương pháp giải:

Phân tích mẫu thức thành nhân tử, khử dạng vô định và tính giới hạn.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 9} {{\sqrt x - 3} \over {9x - {x^2}}} = \mathop {\lim }\limits_{x \to 9} {{\sqrt x - 3} \over { - x\left( {x - 9} \right)}}\) \( = \mathop {\lim }\limits_{x \to 9} \frac{{\sqrt x  - 3}}{{ - x\left( {\sqrt x  - 3} \right)\left( {\sqrt x  + 3} \right)}}\) \( = - \mathop {\lim }\limits_{x \to 9} {1 \over {x\left( {\sqrt x + 3} \right)}} \) \( =  - \frac{1}{{9\left( {\sqrt 9  + 3} \right)}}\) \(= - {1 \over {54}}\)

LG e

\(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right|\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 4} \right| \) \(= \left| {{{\left( {\sqrt 3 } \right)}^2} - 4} \right| = \left| { - 1} \right|\) \(= 1\)

LG f

\(\mathop {\lim }\limits_{x \to 2} \sqrt {{{{x^4} + 3x - 1} \over {2{x^2} - 1}}} \)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 2} \sqrt {{{{x^4} + 3x - 1} \over {2{x^2} - 1}}} = \sqrt {{{{2^4} + 3.2 - 1} \over {{{22}^2} - 1}}} = \sqrt 3 \)


Cùng chủ đề:

Câu 23 trang 31 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 59 SGK Hình học 11 Nâng cao
Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 111 SGK Hình học 11 Nâng cao
Câu 23 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 227 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 23 SGK Hình học 11 Nâng cao
Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 59 SGK Hình học 11 Nâng cao