Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Nhị thức Niu - Tơn


Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao

Tính hệ số

Đề bài

Tính hệ số của \({x^{25}}{y^{10}}\) trong khai triển của  \({\left( {{x^3} + xy} \right)^{15}}\)

Lời giải chi tiết

Ta có:

\({\left( {{x^3} + xy} \right)^{15}} = \sum\limits_{k = 0}^{15} {C_{15}^k{{\left( {{x^3}} \right)}^{15 - k}}{{\left( {xy} \right)}^k}} \)

\( = \sum\limits_{k = 0}^{15} {C_{15}^k.{x^{45 - 3k}}{x^k}{y^k}}\) \(  = \sum\limits_{k = 0}^{15} {C_{15}^k.{x^{45 - 2k}}{y^k}} \)

Số hạng chứa \({x^{25}}{y^{10}}\) thì:

\(\left\{ \begin{array}{l} 45 - 2k = 25\\ k = 10 \end{array} \right. \Leftrightarrow k = 10\)

Do đó k = 10 nên số hạng đó là : \(C_{15}^{10}{x^{25}}{y^{10}}\)

Vậy hệ số của  \({x^{25}}{y^{10}}\,la\,C_{15}^{10} = 3003\)


Cùng chủ đề:

Câu 22 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 22 trang 227 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 23 SGK Hình học 11 Nâng cao
Câu 23 trang 31 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 59 SGK Hình học 11 Nâng cao
Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 111 SGK Hình học 11 Nâng cao
Câu 23 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 227 SGK Đại số và Giải tích 11 Nâng cao