Câu 23 trang 227 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO


Câu 23 trang 227 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Giải các phương trình sau :

LG a

\(y' = 0\) với \(y = {1 \over 2}\sin 2x + \sin x - 3\)

Lời giải chi tiết:

Ta có:

\(\eqalign{  & y' = \cos 2x + \cos x  \cr  & y' = 0 \Leftrightarrow \cos 2x + \cos x = 0  \cr  &  \Leftrightarrow 2{\cos ^2}x + \cos x - 1 = 0  \cr  &  \Leftrightarrow \left[ {\matrix{   {\cos x =  - 1}  \cr   {\cos x = {1 \over 2}}  \cr  } } \right. \Leftrightarrow \left[ {\matrix{   {x = \pi  + k2\pi }  \cr   {x =  \pm {\pi  \over 3} + k2\pi }  \cr  } } \right.\,\,\left( {k \in Z} \right) \cr} \)

LG b

\(y' = 0\) với \(y = \sin 3x - 2\cos 3x - 3x + 4\)

Lời giải chi tiết:

\(\eqalign{  & y' = 3\cos 3x + 6\sin 3x - 3  \cr  & y' = 0 \Leftrightarrow 3\cos 3x + 6\sin 3x - 3=0\cr & \Leftrightarrow  \cos 3x + 2\sin 3x = 1  \cr  &  \Leftrightarrow {1 \over {\sqrt 5 }}\cos 3x + {2 \over {\sqrt 5 }}\sin 3x = {1 \over {\sqrt 5 }}  \cr  &  \Leftrightarrow \cos \left( {3x - \alpha } \right) = \cos \alpha \cr &\left( {\text{với }\cos \alpha  = {1 \over {\sqrt 5 }},\sin \alpha  = {2 \over {\sqrt 5 }}} \right)  \cr  &  \Leftrightarrow \left[ {\matrix{   {3x - \alpha  = \alpha  + k2\pi }  \cr   {3x - \alpha  =  - \alpha  + k2\pi }  \cr  } } \right. \cr &\Leftrightarrow \left[ {\matrix{   {x = {{2\alpha } \over 3} + k{{2\pi } \over 3}}  \cr   {x = k{{2\pi } \over 3}}  \cr  } } \right. \cr} \)


Cùng chủ đề:

Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 111 SGK Hình học 11 Nâng cao
Câu 23 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 227 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 23 SGK Hình học 11 Nâng cao
Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 59 SGK Hình học 11 Nâng cao
Câu 24 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 111 SGK Hình học 11 Nâng cao