Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Các quy tắc tính đạo hàm


Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Tính đạo hàm của mỗi hàm số sau

Tính đạo hàm của mỗi hàm số sau

LG a

\(y = {{2x + 3} \over {{x^2} - 5x + 5}}\)

Phương pháp giải:

Đạo hàm của thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(y' = {{ - 2{x^2} - 6x + 25} \over {{{\left( {{x^2} - 5x + 5} \right)}^2}}}\)

LG b

\(y = {1 \over {{{\left( {{x^2} - x + 1} \right)}^5}}}\)

Lời giải chi tiết:

\(y'  = {{ - 5\left( {2x - 1} \right)} \over {{{\left( {{x^2} - x + 1} \right)}^6}}}\)

LG c

\(y = {x^2} + x\sqrt x  + 1\)

Lời giải chi tiết:

\(y'  = 2x + {3 \over 2}\sqrt x \)

LG d

\(y = \left( {x + 1} \right){\left( {x + 2} \right)^2}{\left( {x + 3} \right)^3}\)

Lời giải chi tiết:

\(\eqalign{  & y' = 2\left( {x + 2} \right){\left( {x + 3} \right)^2}\left( {3{x^2} + 11x + 9} \right) \cr} \)

LG e

\(y = \sqrt {{{{x^2} + 1} \over x}} \)

Phương pháp giải:

Sử dụng công thức \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

Lời giải chi tiết:


Cùng chủ đề:

Câu 23 trang 59 SGK Hình học 11 Nâng cao
Câu 23 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 111 SGK Hình học 11 Nâng cao
Câu 23 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 23 trang 227 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 23 SGK Hình học 11 Nâng cao
Câu 24 trang 31 SGK Đại số và Giải tích 11 Nâng cao
Câu 24 trang 59 SGK Hình học 11 Nâng cao
Câu 24 trang 67 SGK Đại số và Giải tích 11 Nâng cao