Câu 27 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Cho cấp số cộng (un)
Đề bài
Cho cấp số cộng (u n ) có \({u_2} + {u_{22}} = 60\). Hãy tính tổng 23 số hạng đầu tiên của cấp số cộng đó.
Phương pháp giải - Xem chi tiết
Sử dụng định lí 3: \({S_n} = {{n\left( {{u_1} + {u_n}} \right)} \over 2}\).
Lời giải chi tiết
Gọi \(d\) là công sai của cấp số cộng đã cho, ta có :
\({u_1} = {u_2} - d\,\text{ và }\,{u_{23}} = {u_{22}} + d\)
Do đó, áp dụng định lí 3 cho \(n = 23\), ta được :
\({S_{23}} = {{23\left( {{u_1} + {u_{23}}} \right)} \over 2} = \frac{{23\left( {{u_2} - d + {u_{22}} + d} \right)}}{2}\)
\(= {{23\left( {{u_2} + {u_{22}}} \right)} \over 2} = {{23.60} \over 2} = 23.30 = 690\)
Cách khác:
Ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} {u_2} = {u_1} + d\\ {u_{22}} = {u_1} + 21d \end{array} \right.\\ \Rightarrow {u_2} + {u_{22}} = 60\\ \Leftrightarrow {u_1} + d + {u_1} + 21d = 60\\ \Rightarrow 2{u_1} + 22d = 60\\ \Rightarrow {S_{23}} = \frac{{23\left( {2{u_1} + 22d} \right)}}{2}\\ = \frac{{23.60}}{2} = 690 \end{array}\)