Câu 28 trang 41 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Một số dạng phương trình lượng giác đơn giản


Câu 28 trang 41 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Giải các phương trình sau :

LG a

\(2{\cos ^2}x - 3\cos x + 1 = 0\)

Lời giải chi tiết:

Đặt \(t = \cos x\), \(|t| ≤ 1\) ta có:

\(2{t^2} - 3t + 1 = 0 \Leftrightarrow \left[ {\matrix{{t = 1} \cr {t = {1 \over 2}} \cr} } \right. \)

\(\Leftrightarrow \left[ {\matrix{{\cos x = 1} \cr {\cos x = {1 \over 2}} \cr} } \right. \)

\(\Leftrightarrow \left[ {\matrix{{x = k2\pi } \cr {x = \pm {\pi \over 3} + k2\pi } \cr} \left( {k \in\mathbb Z} \right)} \right.\)

LG b

\({\cos ^2}x + \sin x + 1 = 0\)

Lời giải chi tiết:

Ta có:

\(\eqalign{& {\cos ^2}x + \sin x + 1 = 0 \cr&\Leftrightarrow 1 - {\sin ^2}x + \sin x + 1 = 0 \cr & \Leftrightarrow {\sin ^2}x - \sin x - 2 = 0 \cr&\Leftrightarrow \left[ {\matrix{{\sin x = - 1} \cr {\sin x = 2\,\left( {\text {loại }} \right)} \cr} } \right. \cr&\Leftrightarrow x = - {\pi \over 2} + k2\pi \cr} \)

LG c

\(\sqrt 3 {\tan ^2}x - \left( {1 + \sqrt 3 } \right)\tan x + 1 = 0\)

Lời giải chi tiết:

\(\sqrt 3 {\tan ^2}x - \left( {1 + \sqrt 3 } \right)\tan x + 1 = 0 \)

\(\Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = {1 \over {\sqrt 3 }}} \cr} } \right. \)

\(\Leftrightarrow \left[ {\matrix{{x = {\pi \over 4} + k\pi } \cr {x = {\pi \over 6} + k\pi } \cr} } \right.\left( {k \in\mathbb Z} \right)\)


Cùng chủ đề:

Câu 27 trang 112 SGK Hình học 11 Nâng cao
Câu 27 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 27 trang 158 SGK Đại số và Giải tích 11 Nâng cao
Câu 27 trang 206 SGK Đại số và Giải tích 11 Nâng cao
Câu 28 trang 29 SGK Hình học 11 Nâng cao
Câu 28 trang 41 SGK Đại số và Giải tích 11 Nâng cao
Câu 28 trang 60 SGK Hình học 11 Nâng cao
Câu 28 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 28 trang 112 SGK Hình học 11 Nâng cao
Câu 28 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 28 trang 158 SGK Đại số và Giải tích 11 Nâng cao