Câu 28 trang 158 SGK Đại số và Giải tích 11 Nâng cao
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
lim
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \displaystyle x > 0, ta có : \displaystyle {{x + 2\sqrt x } \over {x - \sqrt x }} = {{\sqrt x \left( \sqrt x + 2 \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}} = {{\sqrt x + 2} \over {\sqrt x - 1}}
Do đó: \displaystyle \mathop {\lim }\limits_{x \to {0^ + }} {{x + 2\sqrt x } \over {x - \sqrt x }} = \mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt x + 2} \over {\sqrt x - 1}} \displaystyle = {2 \over { - 1}} = - 2
LG b
\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }}
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \displaystyle x < 2, ta có: \displaystyle {{4 - {x^2}} \over {\sqrt {2 - x} }} = {{\left( {2 - x} \right)\left( {2 + x} \right)} \over {\sqrt {2 - x} }} \displaystyle = \left( {x + 2} \right)\sqrt {2 - x}
Do đó \displaystyle \mathop {\lim }\limits_{x \to {2^ - }} {{4 - {x^2}} \over {\sqrt {2 - x} }} \displaystyle = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 2} \right)\sqrt {2 - x} = 0
LG c
\displaystyle \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }}
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với mọi \displaystyle x > -1
\displaystyle {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }} = {{\left( {x + 1} \right)\left( {x + 2} \right)} \over {{x^2}\sqrt {x + 1} }} \displaystyle = {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}}
Do đó \displaystyle \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + 3x + 2} \over {\sqrt {{x^5} + {x^4}} }} \displaystyle = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{\sqrt {x + 1} \left( {x + 2} \right)} \over {{x^2}}} = 0
LG d
\displaystyle \mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }}
Phương pháp giải:
Phân tích từ và mẫu thành các nhân tử, rút gọn khử dạng vô định và tính giới hạn.
Giải chi tiết:
Với \displaystyle -3 < x < 3
\displaystyle {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {{\sqrt {\left( {3 - x} \right)\left( {4 - x} \right)} } \over {\sqrt {\left( {3 - x} \right)\left( {3 + x} \right)} }} \displaystyle = {{\sqrt {4 - x} } \over {\sqrt {3 + x} }}
Do đó \displaystyle \mathop {\lim }\limits_{x \to {3^ - }} {{\sqrt {{x^2} - 7x + 12} } \over {\sqrt {9 - {x^2}} }} = {1 \over {\sqrt 6 }} = {{\sqrt 6 } \over 6}