Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 1. Khái niệm đạo hàm


Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x 0 (a là hằng số).

LG a

\(y = ax + 3\)

Phương pháp giải:

- Tính \(\Delta y=f(x_0+\Delta x)-f(x_0)\)

- Tìm giới hạn \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\)

Lời giải chi tiết:

\(f(x) = ax + 3\), cho x 0 một số gia Δx, ta có:

\(\eqalign{  & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = a\left( {{x_0} + \Delta x} \right) + 3 - \left( {a{x_0} + 3} \right)\cr & = a\Delta x  \cr  &  \Rightarrow {{\Delta y} \over {\Delta x}} = a\cr & \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = a \cr} \)

LG b

\(y = {1 \over 2}a{x^2}\)

Lời giải chi tiết:

\(\eqalign{  & f\left( x \right) = {1 \over 2}a{x^2}\cr &\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = {1 \over 2}a{\left( {{x_0} + \Delta x} \right)^2} - {1 \over 2}ax_0^2  \cr  & = \frac{1}{2}ax_0^2 + a{x_0}\Delta x + \frac{1}{2}a{\left( {\Delta x} \right)^2} - \frac{1}{2}ax_0^2\cr &   = a{x_0}\Delta x + \frac{1}{2}a{\left( {\Delta x} \right)^2}  \cr  & = \Delta x\left( {a{x_0} + \frac{1}{2}a\Delta x} \right)\cr &  \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} \left( {a{x_0} + \frac{1}{2}a\Delta x} \right) = a{x_0} \cr} \)


Cùng chủ đề:

Câu 3 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 120 SGK Hình học 11 Nâng cao
Câu 3 trang 122 SGK Hình học 11 Nâng cao
Câu 3 trang 125 SGK Hình học 11 Nâng cao
Câu 3 trang 130 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 223 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 9 SGK Hình học 11 Nâng cao
Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 34 SGK Hình học 11 Nâng cao
Câu 4 trang 50 SGK Hình học 11 Nâng cao