Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 1. Các hàm số lượng giác


Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Cho các hàm số f(x) = sinx, g(x) = cosx, h(x) = tanx và các khoảng

Đề bài

Cho các hàm số \(f(x) = \sin x,\) \( g(x) = \cos x,\) \( h(x) = \tan x\) và các khoảng

\({J_1} = \left( {\pi ;{{3\pi } \over 2}} \right);{J_2} = \left( { - {\pi \over 4};{\pi \over 4}} \right);\) \({J_3} = \left( {{{31\pi } \over 4};{{33\pi } \over 4}} \right);{J_4} = \left( { - {{452\pi } \over 3};{{601\pi } \over 4}} \right)\)

Hỏi hàm số nào trong ba hàm số trên đồng biến trên khoảng \(J_1\) ? Trên khoảng \(J_2\) ? Trên khoảng \(J_3\) ? Trên khoảng \(J_4\) ? (Trả lời bằng cách lập bảng).

Phương pháp giải - Xem chi tiết

Sử dụng lí thuyết:

Hàm số \(y = \sin x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\)

Hàm số \(y = \cos x\) đồng biến trên \(\left( { - \pi  + k2\pi ;k2\pi } \right)\) và nghịch biến trên \(\left( {k2\pi ;\pi  + k2\pi } \right)\)

Hàm số \(y = \tan x\) đồng biến trên \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\).

Lời giải chi tiết

Ta có:

+) \({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) nên hàm số \(y = \sin x\) nghịch biến trên \({J_1}\), hàm số \(y = \tan x\) đồng biến trên \({J_1}\).

\({J_1} = \left( {\pi ;\frac{{3\pi }}{2}} \right) \subset \left( {\pi ;2\pi } \right)\) nên hàm số \(y = \cos x\) đồng biến trên \({J_1}\)

+) \({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right) \subset \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_2}\), hàm số \(y = \tan x\) đồng biến trên \({J_2}\).

\({J_2} = \left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\)\( = \left( { - \frac{\pi }{4};0} \right) \cup \left[ {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) chỉ đồng biến trên \(\left( {\frac{\pi }{4};0} \right)\) và nghịch biến trên \(\left( {0;\frac{\pi }{4}} \right)\) nên hàm số \(y = \cos x\) không đồng biến trên \({J_2}\)

+) \({J_3} = \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} \right)\) \( = \left( {8\pi  - \frac{\pi }{4};8\pi  + \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\) đồng biến trên \({J_3}\), hàm số \(y = \tan x\) đồng biến trên \({J_3}\), hàm số \(y = \cos x\) không đồng biến trên \({J_3}\)

+) \({J_4} = \left( { - \frac{{452\pi }}{3};\frac{{601\pi }}{4}} \right)\) \( = \left( { - 150\pi  - \frac{{2\pi }}{3}; - 150\pi  - \frac{\pi }{4}} \right)\) nên hàm số \(y = \sin x\), \(y = \tan x\) không đồng biến trên \({J_4}\), hàm số \(y = \cos x\) đồng biến trên \({J_4}\)

Ta có bảng sau, trong đó dấu “ +” có nghĩa “đồng biến”, dấu “0” có nghĩa “không đồng biến” :

Hàm số

J 1

J 2

J 3

J 4

\(f(x) = \sin x\)

0

+

+

0

\(g(x) = \cos x\)

+

0

0

+

\(h(x) = \tan x\)

+

+

+

0


Cùng chủ đề:

Câu 3 trang 125 SGK Hình học 11 Nâng cao
Câu 3 trang 130 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 223 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 9 SGK Hình học 11 Nâng cao
Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 34 SGK Hình học 11 Nâng cao
Câu 4 trang 50 SGK Hình học 11 Nâng cao
Câu 4 trang 54 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 78 SGK Hình học 11 Nâng cao
Câu 4 trang 79 SGK Hình học 11 Nâng cao