Câu 4 trang 78 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài tập ôn tập chương II


Câu 4 trang 78 SGK Hình học 11 Nâng cao

Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:

Đề bài

Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M 1 , N 1 . Chứng minh rằng:

a. MN // DE

b. M 1 N 1 // mp(DEF)

c. mp(MNN 1 M 1 ) // mp(DEF)

Lời giải chi tiết

a. Gọi O là tâm hình bình hành ABCD, ta có AO là trung tuyến và \({{AM} \over {AO}} = {{2AM} \over {AC}} = {2 \over 3}\)

⇒ M là trọng tâm của tam giác ABD , tương tự N là trọng tâm tam giác ABE

Gọi I là trung điểm của AB thì M, N lần lượt trên DI và EI

Trong tam giác IDE ta có: \({{IM} \over {ID}} = {{IN} \over {IE}} = {1 \over 3}\) nên MN // DE và \(MN = {1 \over 3}DE\)

b. Trong ∆FAB: NN 1 // AB ⇒ \({{A{N_1}} \over {AF}} = {{BN} \over {BF}} = {1 \over 3}\)

Trong ∆DAC: MM 1 // CD ⇒ \({{A{M_1}} \over {AD}} = {{AM} \over {AC}} = {1 \over 3}\)

Do đó \({{A{N_1}} \over {AF}} = {{A{M_1}} \over {AD}}\) nên M 1 N 1 // DF

Mà DF ⊂ (DEF) suy ra M 1 N 1 // mp(DEF)

c. Ta có : M 1 N 1 // DF , NN 1 // EF

mà M 1 N 1 và NN 1 cắt nhau và nằm trong mp(MNN 1 M 1 ), còn DF và EF cắt nhau và nằm trong mp(DEF)

Vậy mp(MNN 1 M 1 ) // mp(DEF)


Cùng chủ đề:

Câu 4 trang 9 SGK Hình học 11 Nâng cao
Câu 4 trang 14 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 34 SGK Hình học 11 Nâng cao
Câu 4 trang 50 SGK Hình học 11 Nâng cao
Câu 4 trang 54 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 78 SGK Hình học 11 Nâng cao
Câu 4 trang 79 SGK Hình học 11 Nâng cao
Câu 4 trang 91 SGK Hình học 11 Nâng cao
Câu 4 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Câu 4 trang 120 SGK Hình học 11 Nâng cao
Câu 4 trang 122 SGK Hình học 11 Nâng cao