Câu 33 trang 212 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Đạo hàm của các hàm số lượng giác


Câu 33 trang 212 SGK Đại số và Giải tích 11 Nâng cao

Tìm đạo hàm của mỗi hàm số sau :

Tìm đạo hàm của mỗi hàm số sau :

LG a

\(\displaystyle y = {{\sin x} \over x} + {x \over {{\mathop{\rm sinx}\nolimits} }}\)

Phương pháp giải:

Sử dụng công thức đạo hàm hàm hợp và các công thức tính đạo hàm các hàm số sơ cấp.

Giải chi tiết:

\(y' = \dfrac{{\left( {\sin x} \right)'.x - \sin x.\left( {x'} \right)}}{{{x^2}}}\) \( + \dfrac{{x'\sin x - x.\left( {\sin x} \right)'}}{{{{\sin }^2}x}}\)

\(\eqalign{  & = {{x\cos x - \sin x} \over {{x^2}}} + {{\sin x - x\cos x} \over {{{\sin }^2}x}}  \cr  &  = \left( {x\cos x - {\mathop{\rm sinx}\nolimits} } \right)\left( {{1 \over {{x^2}}} - {1 \over {{{\sin }^2}x}}} \right) \cr} \)

LG b

\(\displaystyle y = {{{{\sin }^2}x} \over {1 + \tan 2x}}\)

Phương pháp giải:

Sử dụng công thức đạo hàm hàm hợp và các công thức tính đạo hàm các hàm số sơ cấp.

Giải chi tiết:

LG c

\(y = \tan \left( {\sin x} \right)\)

Phương pháp giải:

Sử dụng công thức đạo hàm hàm hợp và các công thức tính đạo hàm các hàm số sơ cấp.

Giải chi tiết:

\(y' = \left( {\sin x} \right)'.\dfrac{1}{{{{\cos }^2}\left( {\sin x} \right)}}\) \( \displaystyle = {{\cos x} \over {{{\cos }^2}\left( {\sin x} \right)}}\)

LG d

\(y = x\cot \left( {{x^2} - 1} \right)\)

Phương pháp giải:

Sử dụng công thức đạo hàm hàm hợp và các công thức tính đạo hàm các hàm số sơ cấp.

Giải chi tiết:

\(y' = x'.\cot \left( {{x^2} - 1} \right) + x.\left[ {\cot \left( {{x^2} - 1} \right)} \right]'\) \( = \cot \left( {{x^2} - 1} \right) + x.\left( {{x^2} - 1} \right)'.\dfrac{{ - 1}}{{{{\sin }^2}\left( {{x^2} - 1} \right)}}\)

\(\eqalign{  & = \cot \left( {{x^2} - 1} \right) + x.{{ - 2x} \over {{{\sin }^2}\left( {{x^2} - 1} \right)}}  \cr  &  = \cot \left( {{x^2} - 1} \right) - {{2{x^2}} \over {{{\sin }^2}\left( {{x^2} - 1} \right)}} \cr} \)

LG e

\(\displaystyle y = {\cos ^2}\sqrt {{\pi  \over 4} - 2x} \)

Phương pháp giải:

Sử dụng công thức đạo hàm hàm hợp và các công thức tính đạo hàm các hàm số sơ cấp.

Giải chi tiết:

LG f

\(y = x\sqrt {\sin 3x} \)

Phương pháp giải:

Sử dụng công thức đạo hàm hàm hợp và các công thức tính đạo hàm các hàm số sơ cấp.

Giải chi tiết:

\(y' = x'\sqrt {\sin 3x}  + x.\left( {\sqrt {\sin 3x} } \right)'\) \( = \sqrt {\sin 3x}  + x.\dfrac{{\left( {\sin 3x} \right)'}}{{2\sqrt {\sin 3x} }}\) \( \displaystyle = \sqrt {\sin 3x}  + x.{{3\cos 3x} \over {2\sqrt {\sin 3x} }} \) \(\displaystyle = {{2\sin 3x + 3x\cos 3x} \over {2\sqrt {\sin 3x} }}\)


Cùng chủ đề:

Câu 33 trang 68 SGK Hình học 11 Nâng cao
Câu 33 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 118 SGK Hình học 11 Nâng cao
Câu 33 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 68 SGK Hình học 11 Nâng cao
Câu 34 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 118 SGK Hình học 11 Nâng cao
Câu 34 trang 121 SGK Đại số và Giải tích 11 Nâng cao