Câu 33 trang 118 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5: Khoảng cách


Câu 33 trang 118 SGK Hình học 11 Nâng cao

Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).

Đề bài

Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và \(\widehat {BAD} = \widehat {BAA'} = \widehat {DAA'} = 60^\circ .\) Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).

Lời giải chi tiết

Từ giả thiết suy ra các tam giác A’AD, BAD, A’AB là các tam giác cân cùng có góc ở đỉnh bằng 60˚ nên chúng là các tam giác đều. Như vậy tứ diện A’ABD có các cạnh cùng bằng a hay A’ABD là tứ diện đều. Khi đó hình chiếu của A’ trên mp(ABCD) chính là trọng tâm H của tam giác đều ABD. Khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’) chính là độ dài A’H. Ta có:

\(A'{H^2} = AA{'^2} - A{H^2}\)

\(= {a^2} - {\left( {{{a\sqrt 3 } \over 3}} \right)^2} = {a^2} - {{{a^2}} \over 3} = {{2{a^2}} \over 3}\)

Vậy \(A'H = {{a\sqrt 6 } \over 3}\)


Cùng chủ đề:

Câu 32 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 32 SGK Hình học 11 Nâng cao
Câu 33 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 68 SGK Hình học 11 Nâng cao
Câu 33 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 118 SGK Hình học 11 Nâng cao
Câu 33 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 68 SGK Hình học 11 Nâng cao