Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Giới hạn một bên


Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

Đề bài

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{{x^2} - 2x + 3\,\text{ với }\,x \le 2.} \cr {4x - 3\,\text{ với }\,x > 2} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\,\text{ và }\,\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) (nếu có).

Lời giải chi tiết

Ta có:

\(\eqalign{ & \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {4x - 3} \right) =4.2-3= 5 \cr & \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - 2x + 3} \right) =2^2-2.2+3= 3 \cr} \)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) nên không tồn tại  \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)


Cùng chủ đề:

Câu 33 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 68 SGK Hình học 11 Nâng cao
Câu 33 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 118 SGK Hình học 11 Nâng cao
Câu 33 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 68 SGK Hình học 11 Nâng cao
Câu 34 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 34 trang 118 SGK Hình học 11 Nâng cao