Câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 6. Một vài quy tắc tìm giới hạn vô cực


Câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao

Tính

LG a

\(\mathop {\lim }\limits_{x \to 1} \left[ {{2 \over {{{\left( {x - 1} \right)}^2}}}.{{2x + 1} \over {2x - 3}}} \right]\)

Lời giải chi tiết:

Ta có:  \(\mathop {\lim }\limits_{x \to 1} {2 \over {{{\left( {x - 1} \right)}^2}}} = + \infty \) vì \(\mathop {\lim }\limits_{x \to 1} {\left( {x - 1} \right)^2} = 0,{\left( {x - 1} \right)^2} > 0,\forall x \ne 1\)

\(\text{ và }\,\mathop {\lim }\limits_{x \to 1} {{2x + 1} \over {2x - 3}} = {3 \over { - 1}} = - 3 < 0\)

Do đó  \(\mathop {\lim }\limits_{x \to 1} \left[ {{2 \over {{{\left( {x - 1} \right)}^2}}}.{{2x + 1} \over {2x - 3}}} \right] = - \infty \)

LG b

\(\mathop {\lim }\limits_{x \to 1} {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}}\)

Lời giải chi tiết:

\(\eqalign{ & {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} \cr & = \frac{5}{{\left( {x - 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)}}\cr &= {1 \over {{{\left( {x - 1} \right)}^2}}}.{5 \over {x - 2}} \cr & \mathop {\lim }\limits_{x \to 1} {1 \over {{{\left( {x - 1} \right)}^2}}} = + \infty \cr &\text{ vì } \mathop {\lim }\limits_{x \to 1} {\left( {x - 1} \right)^2} = 0,{\left( {x - 1} \right)^2} > 0,\forall x \ne 1\cr &\mathop {\lim }\limits_{x \to 1} {5 \over {x - 2}} = - 5 < 0 \cr & \text{ nên }\cr &\mathop {\lim }\limits_{x \to 1} {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = - \infty \cr} \)


Cùng chủ đề:

Câu 36 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 68 SGK Hình học 11 Nâng cao
Câu 37 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 68 SGK Hình học 11 Nâng cao
Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 121 SGK Đại số và Giải tích 11 Nâng cao