Câu 38 trang 46 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Một số dạng phương trình lượng giác đơn giản


Câu 38 trang 46 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Giải các phương trình sau :

LG a

\({\cos ^2}x - 3{\sin ^2}x = 0\)

Phương pháp giải:

Hạ bậc giải phương trình, sử dụng công thức

\(\begin{array}{l} {\sin ^2}\alpha = \frac{{1 - \cos 2x}}{2}\\ {\cos ^2}\alpha = \frac{{1 + \cos 2\alpha }}{2} \end{array}\)

Lời giải chi tiết:

\(\eqalign{ & {\cos ^2}x - 3{\sin ^2}x = 0 \cr & \Leftrightarrow {{1 + \cos 2x} \over 2} - {{3\left( {1 - \cos 2x} \right)} \over 2} = 0 \cr &\Leftrightarrow 1 + \cos 2x - 3 + 3\cos 2x = 0 \cr&\Leftrightarrow  - 2 + 4\cos 2x = 0\cr&\Leftrightarrow \cos 2x = {1 \over 2} \Leftrightarrow 2x = \pm {\pi \over 3} + k2\pi \cr & \Leftrightarrow x = \pm {\pi \over 6} + k\pi \cr} \)

LG b

\({\left( {\tan x + \cot x} \right)^2} - \left( {\tan x + \cot x} \right) = 2\)

Phương pháp giải:

Đặt ẩn phụ \(t = \tan x + \cot x\).

Lời giải chi tiết:

Đặt \(t = \tan x + \cot x\).

\(\begin{array}{l} \Rightarrow {t^2} = {\left( {\tan x + \cot x} \right)^2}\\ = {\tan ^2}x + {\cot ^2}x + 2\tan x\cot x\\ \ge 2\tan x\cot x + 2\tan x\cot x\\ = 2.1 + 2.1\\ = 4\\ \Rightarrow {t^2} \ge 4 \Leftrightarrow \left[ \begin{array}{l} t \ge 2\\ t \le - 2 \end{array} \right. \end{array}\)

Phương trình trở thành:

\(\eqalign{& {t^2} - t = 2 \Leftrightarrow {t^2} - t - 2 = 0 \cr&\Leftrightarrow \left[ {\matrix{{t = - 1\,\left( \text{loại} \right)} \cr {t = 2} \cr} } \right. \cr & t = 2 \Leftrightarrow \tan x + \cot x = 2 \cr&\Leftrightarrow \tan x + {1 \over {\tan x}} = 2 \cr & \Leftrightarrow {\tan ^2}x - 2\tan x + 1 = 0 \cr & \Leftrightarrow \tan x = 1 \Leftrightarrow x = {\pi \over 4} + k\pi \cr} \)

LG c

\(\sin x + {\sin ^2}{x \over 2} = 0,5\)

Lời giải chi tiết:

\(\eqalign{ & \sin x + {\sin ^2}{x \over 2} = 0,5 \cr & \Leftrightarrow \sin x + {{1 - \cos x} \over 2} = {1 \over 2}\cr& \Leftrightarrow \sin x + \frac{1}{2} - \frac{1}{2}\cos x = \frac{1}{2}\cr& \Leftrightarrow \sin x = {1 \over 2}\cos x \cr & \Leftrightarrow \frac{{\sin x}}{{\cos x}} = \frac{1}{2}\cr&\Leftrightarrow \tan x = {1 \over 2} \Leftrightarrow x = \alpha + k\pi \cr&\text{ trong đó }\,\tan \alpha = {1 \over 2} \cr} \)


Cùng chủ đề:

Câu 37 trang 68 SGK Hình học 11 Nâng cao
Câu 37 trang 83 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Câu 37 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 68 SGK Hình học 11 Nâng cao
Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 213 SGK Đại số và Giải tích 11 Nâng cao