Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
lim
Lời giải chi tiết:
Dạng {0 \over 0} ta phân tích tử và mẫu ra thừa số :
\eqalign{ & \mathop {\lim }\limits_{x \to 2} {{{x^3} - 8} \over {{x^2} - 4}} \cr &= \mathop {\lim }\limits_{x \to 2} {{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)} \over {\left( {x - 2} \right)\left( {x + 2} \right)}} \cr & = \mathop {\lim }\limits_{x \to 2} {{{x^2} + 2x + 4} \over {x + 2}} = 3 \cr}
LG b
\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}}
Lời giải chi tiết:
\eqalign{ & \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}}\cr & = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{\left( {x + 3} \right)\left( {2x - 1} \right)} \over {{{\left( {x + 3} \right)}^2}}} \cr & = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} {{2x - 1} \over {x + 3}} = - \infty \cr}
Vì \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ + }} \left( {2x - 1} \right) = - 7 < 0 \text{ và }\,\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ +}} \left( {x + 3} \right) = 0; {\left( {x + 3} \right)} > 0,\forall x > - 3
LG c
\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}}
Lời giải chi tiết:
\eqalign{ & \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{2{x^2} + 5x - 3} \over {{{\left( {x + 3} \right)}^2}}} \cr &= \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{\left( {x + 3} \right)\left( {2x - 1} \right)} \over {{{\left( {x + 3} \right)}^2}}} \cr & = \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} {{2x - 1} \over {x + 3}} = + \infty \cr}
Vì \mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {2x - 1} \right) = - 7 < 0 \text{ và }\,\mathop {\lim }\limits_{x \to {{\left( { - 3} \right)}^ - }} \left( {x + 3} \right) = 0; x + 3 < 0, \forall x<-3
LG d
\mathop {\lim }\limits_{x \to 0} {{\sqrt {{x^3} + 1} - 1} \over {{x^2} + x}}
Phương pháp giải:
Nhân cả tử và mẫu với biểu thức \sqrt {{x^3} + 1} + 1
Lời giải chi tiết:
\eqalign{ & \mathop {\lim }\limits_{x \to 0} {{\sqrt {{x^3} + 1} - 1} \over {{x^2} + x}}\cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {{x^3} + 1} - 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}}{{x\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}}\cr &= \mathop {\lim }\limits_{x \to 0} {{{x^3}} \over {x\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} {{{x^2}} \over {\left( {x + 1} \right)\left( {\sqrt {{x^3} + 1} + 1} \right)}} = 0 \cr}