Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 4. Cấp số nhân


Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Các số x + 6y, 5x + 2y, 8x + y

Đề bài

Các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng; đồng thời, các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất CSC: \[{u_{k + 1}} + {u_{k - 1}} = 2{u_k}\]

Tính chất CSN: \[{u_{k + 1}}.{u_{k - 1}} = u_k^2\]

- Lập hệ phương trình ẩn x, y.

- Giải hệ và kết luận.

Lời giải chi tiết

Vì các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng nên :

\(2\left( {5x + 2y} \right) = \left( {x + 6y} \right) + \left( {8x + y} \right)\)

\( \Leftrightarrow 10x + 4y = 9x + 7y\)

\(\Leftrightarrow x = 3y\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Vì các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân nên :

\({\left( {y + 2} \right)^2} = \left( {x - 1} \right)\left( {x - 3y} \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)

Thế (1) vào (2), ta được:

\({\left( {y + 2} \right)^2} = \left( {3y - 1} \right)\left( {3y - 3} \right)\)

\( \Leftrightarrow {\left( {y + 2} \right)^2} = 0 \Leftrightarrow y = - 2.\)

Từ đó \(x = -6\).


Cùng chủ đề:

Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 213 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 68 SGK Hình học 11 Nâng cao
Câu 39 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 215 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 74 SGK Hình học 11 Nâng cao
Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao