Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Các quy tắc tính xác suất


Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao

Trong một trò chơi điện tử, xác suất để An thắng trong một trân là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?

Đề bài

Trong một trò chơi điện tử, xác suất để An thắng trong một trận là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?

Lời giải chi tiết

Gọi n là số trận mà An chơi.

A là biến cố “An thắng ít nhất một trận trong loạt chơi n trận”.

Biến cố A là \(\overline A \) : “An thua cả n trận”.

Ta có: \(P\left( {\overline A } \right) = {\left( {0,6} \right)^n}\)

Vậy \(P(A) = 1 – (0,6)^n\).

Ta cần tìm số nguyên dương n nhỏ nhất thỏa mãn \(P(A) ≥ 0,95\)

\(\begin{array}{l} \Leftrightarrow 1 - 0,{6^n} \ge 0,95\\ \Leftrightarrow 0,{6^n} \le 0,05 \end{array}\)

Ta có: \({\left( {0,6} \right)^5} \approx {\rm{ }}0,078;{\rm{ }}{\left( {0,6} \right)^6} \approx {\rm{ }}0,047\), \(0,{6^7} \approx 0,028\) nên n nhỏ nhất là 6.

Vậy An phải chơi tối thiểu 6 trận.


Cùng chủ đề:

Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 215 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 74 SGK Hình học 11 Nâng cao
Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 216 SGK Đại số và Giải tích 11 Nâng cao
Câu 41 trang 47 SGK Đại số và Giải tích 11 Nâng cao
Câu 41 trang 74 SGK Hình học 11 Nâng cao