Câu 39 trang 166 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 7. Các dạng vô định


Câu 39 trang 166 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

Tìm các giới hạn sau :

LG a

\(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} + x - 10} \over {9 - 3{x^3}}}\)

Phương pháp giải:

Chia cả tử và mẫu cho lũy thừa bậc cao nhất của x.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} + x - 10} \over {9 - 3{x^3}}} \) \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{{2{x^2} + x - 10}}{{{x^3}}}}}{{\frac{{9 - 3{x^3}}}{{{x^3}}}}}\) \(= \mathop {\lim }\limits_{x \to + \infty } {{{2 \over x} + {1 \over {{x^2}}} - {{10} \over {{x^3}}}} \over {{9 \over {{x^3}}} - 3}} \) \(= \frac{{0 + 0 - 0}}{{0 - 3}}\) \(= 0\)

LG b

\(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {2{x^2} - 7x + 12} } \over {3\left| x \right| - 17}}\)

Phương pháp giải:

Đưa thừa số x trên tử ra ngoài dấu căn, chia cả tử và mẫu cho x.

Lời giải chi tiết:

Với mọi \(x ≠ 0\), ta có :

\({{\sqrt {2{x^2} - 7x + 12} } \over {3\left| x \right| - 17}}\) \( = \frac{{\sqrt {{x^2}\left( {2 - \frac{7}{x} + \frac{{12}}{{{x^2}}}} \right)} }}{{\left| x \right|\left( {3 - \frac{{17}}{{\left| x \right|}}} \right)}}\) \( = {{\left| x \right|\sqrt {2 - {7 \over x} + {{12} \over {{x^2}}}} } \over {\left| x \right|\left( {3 - {{17} \over {\left| x \right|}}} \right)}} = {{\sqrt {2 - {7 \over x} + {{12} \over {{x^2}}}} } \over {3 - {{17} \over {\left| x \right|}}}}\)

Do đó  \(\mathop {\lim }\limits_{x \to - \infty } {{\sqrt {2{x^2} - 7x + 12} } \over {3\left| x \right| - 17}} = {{\sqrt 2 } \over 3}\)


Cùng chủ đề:

Câu 38 trang 213 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 68 SGK Hình học 11 Nâng cao
Câu 39 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 215 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 74 SGK Hình học 11 Nâng cao
Câu 40 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 40 trang 122 SGK Đại số và Giải tích 11 Nâng cao