Câu 39 trang 46 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Một số dạng phương trình lượng giác đơn giản


Câu 39 trang 46 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng các phương trình sau đây vô nghiệm :

Chứng minh rằng các phương trình sau đây vô nghiệm :

LG a

\(\sin x – 2\cos x = 3\)

Lời giải chi tiết:

\(\sin x - 2\cos x = 3 \) \(\Leftrightarrow {1 \over {\sqrt 5 }}\sin x - {2 \over {\sqrt 5 }}\cos x = {3 \over {\sqrt 5 }}\) \( \Leftrightarrow \sin \left( {x - \alpha } \right) = {3 \over {\sqrt 5 }}\)

trong đó \(α\) là số thỏa mãn \(\cos \alpha = {1 \over {\sqrt 5 }}\,\text{ và }\,\sin \alpha = {2 \over {\sqrt 5 }}.\)

Phương trình cuối cùng vô nghiệm do \({3 \over {\sqrt 5 }} > 1,\) nên phương trình đã cho vô nghiệm.

LG b

\(5\sin2x + \sin x + \cos x + 6 = 0\)

Phương pháp giải:

Đặt \(\sin x + \cos x = t\)

Lời giải chi tiết:

Đặt \(t = \sin x + \cos x\) ta có:

\(\begin{array}{l} {t^2} = {\left( {\sin x + \cos x} \right)^2}\\ = {\sin ^2}x + 2\sin x\cos x + {\cos ^2}x\\ = 1 + \sin 2x\\ \Rightarrow \sin 2x = {t^2} - 1 \end{array}\)

Lại có: \({t^2} = 1 + \sin 2x \le 2\)\( \Rightarrow  - \sqrt 2  \le t \le \sqrt 2 \)

Thay vào pt đã cho được:

\(5.\left( {{t^2} - 1} \right) + t + 6 = 0\) \( \Leftrightarrow 5{t^2} + t + 1 = 0\)

Phương trình này vô nghiệm nên phương trình đã cho vô nghiệm.


Cùng chủ đề:

Câu 38 trang 68 SGK Hình học 11 Nâng cao
Câu 38 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 38 trang 213 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 46 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 68 SGK Hình học 11 Nâng cao
Câu 39 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 39 trang 215 SGK Đại số và Giải tích 11 Nâng cao