Câu 43 trang 219 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Đạo hàm cấp cao


Câu 43 trang 219 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng với mọi n ≥ 1, ta có :

Chứng minh rằng với mọi \(n ≥ 1\), ta có :

LG a

Nếu \(f\left( x \right) = \frac{1}{x}\,\text{ thì }\,{f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\)

Phương pháp giải:

Chứng minh bằng phương pháp qui nạp.

Lời giải chi tiết:

Cho \(f\left( x \right) = \frac{1}{x}\left( {x \ne 0} \right).\) Ta hãy chứng minh công thức :

\({f^{\left( n \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}}\left( {\forall x \ge 1} \right)\,\,\left( 1 \right)\) bằng phương pháp qui nạp.

+ Với \(n = 1\), ta có : \({f^{\left( n \right)}}\left( x \right) = f'\left( x \right) =  - \frac{1}{{{x^2}}}\) \(\text{ và }\,\frac{{{{\left( { - 1} \right)}^n}.n!}}{{{x^{n + 1}}}} =  - \frac{1}{{{x^2}}}\)

Suy ra (1) đúng khi n = 1.

+ Giả sử (1) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là : \({f^{\left( k \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}\),

Ta phải chứng minh (1) cũng đúng cho trường hợp \(n = k + 1\), tức là :

\({f^{\left( {k + 1} \right)}}\left( x \right) = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)

Thật vậy, ta có :

\({f^{\left( {k + 1} \right)}}\left( x \right) = \left[ {{f^{\left( k \right)}}\left( x \right)} \right]' \)

\( = \left[ {\frac{{{{\left( { - 1} \right)}^k}.k!}}{{{x^{k + 1}}}}} \right]' \) \(= {\left( { - 1} \right)^k}.k!\frac{{ - \left( {{x^{k + 1}}} \right)'}}{{{{\left( {{x^{k + 1}}} \right)}^2}}} \) \(= {\left( { - 1} \right)^k}.k!.\frac{{\left( { - 1} \right).\left( {k + 1} \right){x^k}}}{{{x^{2k + 2}}}} \) \( = \frac{{{{\left( { - 1} \right)}^{k + 1}}.\left( {k + 1} \right)!}}{{{x^{k + 2}}}}\)

Vậy ta có đpcm.

LG b

Nếu  \(f\left( x \right) = \cos x\,\text{ thì }\,{f^{\left( {4n} \right)}}\left( x \right) = \cos x.\)

Lời giải chi tiết:

Cho \(f(x) = \cos x\). Ta hãy chứng minh công thức :

\({f^{\left( {4n} \right)}}\left( x \right) = \cos x\left( {\forall n \ge 1} \right)\,\,\left( 2 \right)\) bằng phương pháp qui nạp.

Ta có:  \(f'\left( x \right) =  - \sin x;f"\left( x \right) =  - \cos x;\)

\(f'''\left( x \right) = \sin x;{f^{\left( 4 \right)}}\left( x \right) = \cos x\)

+ Với n = 1 thì  \({f^{\left( {4n} \right)}}\left( x \right) = {f^{\left( 4 \right)}}\left( x \right) = \cos x\)

Suy ra (2) đúng khi n = 1

+ Giả sử (2) đúng cho trường hợp \(n = k (k ≥ 1)\), tức là :  \({f^{\left( {4k} \right)}}\left( x \right) = \cos x,\)

Ta phải chứng minh (2) cũng đúng cho trường hợp \(n = k + 1\), tức là phải chứng minh :

\({f^{\left( {4\left( {k + 1} \right)} \right)}}\left( x \right) = \cos x\) \(\left( {hay\,{f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x} \right)\)

Thật vậy, vì :

\(\begin{array}{l} {f^{\left( {4k} \right)}}\left( x \right) = \cos x \\ \text{ nên }\,{f^{\left( {4k + 1} \right)}}\left( x \right) = - \sin x\\ {f^{\left( {4k + 2} \right)}}\left( x \right) = - \cos x\\ {f^{\left( {4k + 3} \right)}}\left( x \right) = \sin x\\ {f^{\left( {4k + 4} \right)}}\left( x \right) = \cos x \end{array}\)

Vậy ta có đpcm.

LG c

Nếu \(f\left( x \right) = \sin ax\) (a là hằng số) thì  \({f^{\left( {4n} \right)}}\left( x \right) = {a^{4n}}\sin ax.\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l} f'\left( x \right) = a{\mathop{\rm cosax}\nolimits} \\ f"\left( x \right) = - {a^2}\sin ax\\ {f^{\left( 3 \right)}}\left( x \right) = - {a^3}\cos ax\\ {f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax \end{array}\)

Với \(n = 1\) ta có \({f^{\left( 4 \right)}}\left( x \right) = {a^4}\sin ax,\) đẳng thức đúng với \(n = 1\)

Giả sử đẳng thức đúng với \(n = k\) tức là :  \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)

Với \(n = k + 1\) ta có  \({f^{\left( {4k + 4} \right)}}\left( x \right) = {\left( {{f^{\left( {4k} \right)}}} \right)^{\left( 4 \right)}}\left( x \right) \) \(= {\left( {{a^{4k}}\sin ax} \right)^{\left( 4 \right)}}\)

Do \({f^{\left( {4k} \right)}}\left( x \right) = {a^{4k}}\sin ax\)

\(\begin{array}{l} {f^{\left( {4k + 1} \right)}}\left( x \right) = {a^{4k + 1}}\cos ax\\ {f^{\left( {4k + 2} \right)}}\left( x \right) = - {a^{4k + 2}}\sin ax\\ {f^{\left( {4k + 3} \right)}}\left( x \right) = - {a^{4k + 3}}\cos ax\\ {f^{\left( {4k + 4} \right)}}\left( x \right) = {a^{4k + 4}}\sin ax \end{array}\)

Vậy đẳng thức đúng với \(n = k + 1\), do đó đẳng thức đúng với mọi n.


Cùng chủ đề:

Câu 43 trang 47 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 75 SGK Hình học 11 Nâng cao
Câu 43 trang 90 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 167 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 44 trang 47 SGK Đại số và Giải tích 11 Nâng cao
Câu 44 trang 75 SGK Hình học 11 Nâng cao
Câu 44 trang 90 SGK Đại số và Giải tích 11 Nâng cao
Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 44 trang 167 SGK Đại số và Giải tích 11 Nâng cao