Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Đạo hàm cấp cao


Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao

a. Nếu

LG a

Nếu \(y = A\sin \left( {\omega t + \varphi } \right) + B\cos \left( {\omega t + \varphi } \right),\) trong đó A, B, ω và φ là những hằng số, thì  \(y" + {\omega ^2}y = 0.\)

Lời giải chi tiết:

\(\begin{array}{l} y = A\sin \left( {\omega t + \varphi } \right) + B\cos \left( {\omega t + \varphi } \right)\,\text{ nên }\\ y' = A\omega \cos \left( {\omega t + \varphi } \right) - B\omega \sin \left( {\omega t + \varphi } \right)\\ y" = - A{\omega ^2}\sin \left( {\omega t + \varphi } \right) - B{\omega ^2}\cos \left( {\omega t + \varphi } \right)\\ Suy\,ra\,:\\\,y" + {\omega ^2}y = - \left[ {A{\omega ^2}\sin \left( {\omega t + \varphi } \right)+B{\omega ^2}\cos \left( {\omega t + \varphi } \right)} \right]\\ + {\omega ^2}\left[ {A\sin \left( {\omega t + \varphi } \right) + B\cos \left( {\omega t + \varphi } \right)} \right] = 0 \end{array}\)

LG b

Nếu \(y = \sqrt {2x - {x^2}} \) thì \({y^3}y" + 1 = 0.\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l} y' = \frac{{2 - 2x}}{{2\sqrt {2x - {x^2}} }} = \frac{{1 - x}}{{\sqrt {2x - {x^2}} }}\\ y'' = \frac{{\left( {1 - x} \right)'\sqrt {2x - {x^2}}  - \left( {1 - x} \right)\left( {\sqrt {2x - {x^2}} } \right)'}}{{2x - {x^2}}}\\ = \frac{{ - \sqrt {2x - {x^2}}  - \left( {1 - x} \right).\frac{{\left( {2x - {x^2}} \right)'}}{{2\sqrt {2x - {x^2}} }}}}{{2x - {x^2}}} \\= \frac{{ - \sqrt {2x - {x^2}}  - \left( {1 - x} \right).\frac{{2 - 2x}}{{2\sqrt {2x - {x^2}} }}}}{{2x - {x^2}}}\\= \frac{{ - \sqrt {2x - {x^2}} - \left( {1 - x} \right).\frac{{1 - x}}{{\sqrt {2x - {x^2}} }}}}{{\left( {2x - {x^2}} \right)}}\\ = \frac{{ - 2x + {x^2} - 1 + 2x - {x^2}}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }} = \frac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }}\\ Suy\,ra\,\\{y^3}.y" + 1 \\= \sqrt {{{\left( {2x - {x^2}} \right)}^3}} .\frac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }} + 1 \\= -1+1=0 \end{array}\)


Cùng chủ đề:

Câu 47 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 91 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 173 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 91 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 173 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 220 SGK Đại số và Giải tích 11 Nâng cao