Câu 48 trang 123 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương III


Câu 48 trang 123 SGK Đại số và Giải tích 11 Nâng cao

Hãy chọn khẳng định đúng

Hãy chọn khẳng định đúng trong các khẳng định dưới đây :

LG a

Dãy số (u n ) xác định bởi

\({u_1} = 3\text{ và }{u_{n + 1}} = {u_n} + 5\) với mọi n ≥ 1

là một cấp số cộng.

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n} \) có là hằng số hay không.

Lời giải chi tiết:

Đúng vì \({u_{n + 1}} - {u_n} = 5,\forall n \ge 1\)

LG b

Dãy số (u n ) xác định bởi

\({u_1} = 3\text{ và }{u_{n + 1}} = {u_n} + n\) với mọi n ≥ 1,

là một cấp số cộng.

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n} \) có là hằng số hay không.

Lời giải chi tiết:

Sai vì \({u_{n + 1}} - {u_n} = n\) không là hằng số

LG c

Dãy số (u n ) xác định bởi

\({u_1} = 4\text{ và }{u_{n + 1}} = 5{u_n}\) với mọi n ≥ 1,

là một cấp số nhân.

Phương pháp giải:

Xét thương \({{{u_{n + 1}}} \over {{u_n}}} \) có là hằng số hay không.

Lời giải chi tiết:

Đúng vì \({{{u_{n + 1}}} \over {{u_n}}} = 5\) là hằng số

LG d

Dãy số (u n ) xác định bởi

\({u_1} = 1\text{ và } {u_{n + 1}} = n{u_n}\) với mọi n ≥ 1

là một cấp số nhân.

Lời giải chi tiết:

Sai vì \({{{u_{n + 1}}} \over {{u_n}}} = n\) không là hằng số.


Cùng chủ đề:

Câu 47 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao
Câu 47 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 91 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 173 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 91 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao