Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương III


Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy hình vuông H1, H2, …, Hn,…

Cho dãy hình vuông H 1 , H 2 , …, H n ,… Với mỗi số nguyên dương n, gọi u n , p n và S n lần lượt là độ dài cạnh, chu vi và diện tích của hình vuông H n .

LG a

Giả sử dãy số (u n ) là một cấp số cộng với công sai khác 0. Hỏi khi đó các dãy số (p n ) và (S n ) có phải là các cấp số cộng hay không ? Vì sao ?

Lời giải chi tiết:

Theo giả thiết ta có :

\({p_n} = 4{u_n}\text{ và }{S_n} = u_n^2\) với mọi \(n \in N^*\)

Gọi d là công sai của cấp số cộng (u n ) , d ≠ 0. Khi đó với mọi \(n \in N^*\), ta có :

\({p_{n + 1}} - {p_n}  = 4{u_{n + 1}} - 4{u_n}\)

\(= 4\left( {{u_{n + 1}} - {u_n}} \right) = 4d\) (không đổi)

Vậy (p n ) là cấp số cộng.

\({S_{n + 1}} - {S_n}  = u_{n + 1}^2 - u_n^2\)

\(= \left( {{u_{n + 1}} - {u_n}} \right)\left( {{u_{n + 1}} + {u_n}} \right) \)

\(= d\left( {{u_{n + 1}} + {u_n}} \right)\) không là hằng số (do d ≠ 0)

Vậy (S n ) không là cấp số cộng.

LG b

Giả sử dãy số (u n ) là một cấp số nhân với công bội dương. Hỏi khi đó các dãy số (p n ) và (S n ) có phải là các cấp số nhân hay không ? Vì sao ?

Lời giải chi tiết:

Gọi q là công bội của cấp số nhân (u n ), q > 0. Khi đó với mọi \(n \in N^*\), ta có :

\({{{p_{n + 1}}} \over {{p_n}}} = {{4{u_{n + 1}}} \over {4{u_n}}} = q\) (không đổi)

\({{{S_{n + 1}}} \over {{S_n}}} = {{u_{n + 1}^2} \over {u_n^2}}  = {\left( {\frac{{{u_{n + 1}}}}{{{u_n}}}} \right)^2}= {q^2}\) (không đổi)

Từ đó suy ra các dãy số (p n ) và (S n ) là cấp số nhân.


Cùng chủ đề:

Câu 48 trang 123 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 173 SGK Đại số và Giải tích 11 Nâng cao
Câu 48 trang 219 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 91 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 173 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 220 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 92 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao