Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương III


Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi :

Đề bài

Cho dãy số (u n ) xác định bởi :

\({u_1} = 3\;\text{và}\;{u_{n + 1}} = \sqrt {{u_n} + 6} \) với mọi n ≥ 1

Chứng minh rằng (u n ) vừa là cấp số cộng, vừa là cấp số nhân.

Phương pháp giải - Xem chi tiết

Tính toán một vài số hạng đầu và dự đoán dãy số đã cho là dãy không đổi.

Chứng minh bằng quy nạp dự đoán và suy ra dãy không đổi vừa là CSC vừa là CSN.

Lời giải chi tiết

Ta có:

\(\begin{array}{l} {u_1} = 3\\ {u_2} = \sqrt {{u_1} + 6} = \sqrt {3 + 6} = 3\\ {u_3} = \sqrt {{u_2} + 6} = \sqrt {3 + 6} = 3\\ ... \end{array}\)

Dự đoán \({u_n} = {\rm{ }}3{\rm{ }}\;\left( 1 \right)\) với mọi n.

Ta chứng minh bằng qui nạp như sau:

+) Với \(n = 1\) ta có \({u_1} = {\rm{ }}3\), (1) đúng

+) Giả sử (1) đúng với \(n=k\) tức là: \({u_k} = {\rm{ }}3\)

+) Ta chứng minh \({u_{k{\rm{ }} + {\rm{ }}1}} = {\rm{ }}3\)

Thật vậy ta có  \({u_{k + 1}} = \sqrt {{u_k} + 6} = \sqrt {3 + 6} = 3\)

Vậy \({u_n} = {\rm{ }}3, ∀n ≥ 1\) do đó (u n ) vừa là cấp số cộng công sai \(d = 0\) vừa là cấp số nhân công bội \(q = 1\).


Cùng chủ đề:

Câu 49 trang 124 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 173 SGK Đại số và Giải tích 11 Nâng cao
Câu 49 trang 220 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 92 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 124 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 175 SGK Đại số và Giải tích 11 Nâng cao
Câu 50 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 51 trang 92 SGK Đại số và Giải tích 11 Nâng cao
Câu 51 trang 124 SGK Đại số và Giải tích 11 Nâng cao
Câu 51 trang 175 SGK Đại số và Giải tích 11 Nâng cao