Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 1 - Đại số 9
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 1 - Đại số 9
Đề bài
Bài 1. Tìm x, biết :
a. \(\sqrt {{x^2} - 10x + 25} = 2\)
b. \(\sqrt {{x^2}} - 2x = 5\)
Bài 2. Chứng minh rằng : \(\sqrt {12 + 2\sqrt {11} } - \sqrt {12 - 2\sqrt {11} } = 2\)
LG bài 1
Phương pháp giải:
Sử dụng \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
a. Ta có:
\(\eqalign{ & \sqrt {{x^2} - 10x + 25} = 2\cr& \Leftrightarrow \sqrt {{{\left( {x - 5} \right)}^2}} = 2 \Leftrightarrow \left| {x - 5} \right| = 2 \cr & \Leftrightarrow \left[ {\matrix{ {x - 5 = 2} \cr {x - 5 = - 2} \cr } } \right. \Leftrightarrow \left[ {\matrix{ {x = 7} \cr {x = 3} \cr } } \right. \cr} \)
b. \(\sqrt {{x^2}} - 2x = 5 \Leftrightarrow \left| x \right| - 2x = 5\,\,\,(*)\)
+ Nếu \(x ≥ 0\). Ta có: \(x – 2x = 5 ⇔ x = -5\) (loại)
+ Nếu \(x < 0\). Ta có: \( - x - 2x = 5 \Leftrightarrow x = - {5 \over 3}\) (nhận)
LG bài 2
Phương pháp giải:
Sử dụng \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
Biến đổi vế trái (VT), ta được :
\(\eqalign{ & VT = \sqrt {12 + 2\sqrt {11} } - \sqrt {12 - 2\sqrt {11} } \cr & \,\,\,\,\,\,\, = \sqrt {{{\left( {1 + \sqrt {11} } \right)}^2}} - \sqrt {{{\left( {1 - \sqrt {11} } \right)}^2}} \cr & \,\,\,\,\,\,\, = 1 + \sqrt {11} - \left| {1 - \sqrt {11} } \right| \cr & \,\,\,\,\,\,\, = 1 + \sqrt {11} + 1 - \sqrt {11}\cr&\;\;\;\,\, = 2 = VP\,\,(đpcm) \cr} \)