Đề thi học kì 2 Toán 6 - Đề số 13 - Cánh diều
Phần trắc nghiệm (3 điểm) Khoanh tròn vào chữ cái đứng trước câu trả lời đúng: Câu 1. Cách viết nào sau đây không phải phân số?
Đề bài
Cách viết nào sau đây không phải phân số?
-
A.
\(\frac{3}{{ - 4}}\)
-
B.
\( - \frac{3}{7}\)
-
C.
\(\frac{{2,5}}{3}\)
-
D.
\(\frac{{ - 11}}{{ - 17}}\)
Số đối của phân số \(\frac{{ - 15}}{{16}}\) là
-
A.
\(\frac{{16}}{{15}}\)
-
B.
\(\frac{{15}}{{16}}\)
-
C.
\(\frac{{15}}{{ - 16}}\)
-
D.
\(\frac{{ - 16}}{{15}}\)
Số nguyên \(x\) thỏa mãn điều kiện \(\frac{x}{3} = \frac{6}{{ - 9}}\) là
-
A.
-1
-
B.
- 2
-
C.
2
-
D.
6
Tỉ số phần trăm của 16 và 20 là
-
A.
\(0,8\% \)
-
B.
\(8\% \)
-
C.
\(16\% \)
-
D.
\(80\% \)
Nam mua một quyển sách có giá bìa là 50000 đồng. Khi trả tiền được cửa hàng giảm giá \(10\% \). Hỏi Nam mua quyển sách đó hết bao nhiêu tiền?
-
A.
400000
-
B.
55000
-
C.
5000
-
D.
45000
Làm tròn số 131,2956 đến hàng phần trăm được kết quả là
-
A.
131,30
-
B.
131,31
-
C.
131,29
-
D.
130
Biết \(\frac{3}{5}\) của một số bằng (-30), số đó là
-
A.
18
-
B.
-18
-
C.
-50
-
D.
50
Đổi hỗn số \( - 3\frac{2}{5}\) ra phân số, kết quả là:
-
A.
\(\frac{{ - 17}}{5}\)
-
B.
\( - \frac{{10}}{5}\)
-
C.
\(\frac{{ - 13}}{5}\)
-
D.
\(\frac{{ - 11}}{5}\)
-
A.
Hai đường thẳng AB và AC song song với nhau.
-
B.
Hai đường thẳng AB và AC cắt nhau.
-
C.
Hai đường thẳng AB và AC trùng nhau.
-
D.
Hai đường thẳng AB và AC có hai điểm chung.
-
A.
Ay và Bx
-
B.
Bx và By
-
C.
Ax và By
-
D.
AB và BA
Trên đường thẳng a lấy 10 điểm phân biệt. Số đoạn thẳng trong hình vẽ là:
-
A.
1
-
B.
10
-
C.
45
-
D.
90
Lúc 10 giờ, góc tạo bởi kim giờ và kim phút là:
-
A.
Góc nhọn
-
B.
Góc vuông
-
C.
Góc tù
-
D.
Góc bẹt
Lời giải và đáp án
Cách viết nào sau đây không phải phân số?
-
A.
\(\frac{3}{{ - 4}}\)
-
B.
\( - \frac{3}{7}\)
-
C.
\(\frac{{2,5}}{3}\)
-
D.
\(\frac{{ - 11}}{{ - 17}}\)
Đáp án : C
Phân số có dạng \(\frac{a}{b}\) với \(a,b \in \mathbb{Z},b \ne 0\).
\(\frac{{2,5}}{3}\) không phải là phân số vì \(2,5 \notin \mathbb{Z}\).
Đáp án C.
Số đối của phân số \(\frac{{ - 15}}{{16}}\) là
-
A.
\(\frac{{16}}{{15}}\)
-
B.
\(\frac{{15}}{{16}}\)
-
C.
\(\frac{{15}}{{ - 16}}\)
-
D.
\(\frac{{ - 16}}{{15}}\)
Đáp án : B
Hai phân số được gọi là đối nhau nếu tổng của chúng bằng 0.
Vì \(\frac{{ - 15}}{{16}} + \frac{{15}}{{16}} = 0\) nên \(\frac{{15}}{{16}}\) là số đối của phân số \(\frac{{ - 15}}{{16}}\).
Đáp án B.
Số nguyên \(x\) thỏa mãn điều kiện \(\frac{x}{3} = \frac{6}{{ - 9}}\) là
-
A.
-1
-
B.
- 2
-
C.
2
-
D.
6
Đáp án : B
Hai phân số \(\frac{a}{b} = \frac{c}{d}\left( {b,d \ne 0} \right)\) nếu \(a.d = c.b\)
\(\begin{array}{l}\frac{x}{3} = \frac{6}{{ - 9}}\\x.\left( { - 9} \right) = 6.3\\ - 9x = 18\\x = - 2\end{array}\)
Đáp án B.
Tỉ số phần trăm của 16 và 20 là
-
A.
\(0,8\% \)
-
B.
\(8\% \)
-
C.
\(16\% \)
-
D.
\(80\% \)
Đáp án : D
Tỉ số phần trăm của a và b là \(\frac{a}{b}.100\% \).
Tỉ số phần trăm của 16 và 20 là \(\frac{{16}}{{20}}.100 = 0,8.100\% = 80\% \).
Đáp án D.
Nam mua một quyển sách có giá bìa là 50000 đồng. Khi trả tiền được cửa hàng giảm giá \(10\% \). Hỏi Nam mua quyển sách đó hết bao nhiêu tiền?
-
A.
400000
-
B.
55000
-
C.
5000
-
D.
45000
Đáp án : D
m% của a là \(m\% .a\).
Vì cửa hàng giảm giá 10% nên số tiền Nam trả ứng với:
100% - 10% = 90%.
Vậy Nam mua quyển sách đó hết:
\(90\% .50000 = 45000\) (đồng)
Đáp án D.
Làm tròn số 131,2956 đến hàng phần trăm được kết quả là
-
A.
131,30
-
B.
131,31
-
C.
131,29
-
D.
130
Đáp án : A
Dựa vào kiến thức làm tròn số.
Số 131,2956 làm tròn đến hàng phần trăm ta được 131,30.
Đáp án A.
Biết \(\frac{3}{5}\) của một số bằng (-30), số đó là
-
A.
18
-
B.
-18
-
C.
-50
-
D.
50
Đáp án : C
Biết \(\frac{m}{n}\) của a là b, ta tính được \(a = b:\frac{m}{n}\)
Số cần tìm là: \( - 30:\frac{3}{5} = - 50\).
Đáp án C.
Đổi hỗn số \( - 3\frac{2}{5}\) ra phân số, kết quả là:
-
A.
\(\frac{{ - 17}}{5}\)
-
B.
\( - \frac{{10}}{5}\)
-
C.
\(\frac{{ - 13}}{5}\)
-
D.
\(\frac{{ - 11}}{5}\)
Đáp án : A
Sử dụng quy tắc đổi hỗn số thành phân số.
Ta có: \( - 3\frac{2}{5} = - \frac{{3.5 + 2}}{5} = - \frac{{17}}{5}\).
Đáp án A.
-
A.
Hai đường thẳng AB và AC song song với nhau.
-
B.
Hai đường thẳng AB và AC cắt nhau.
-
C.
Hai đường thẳng AB và AC trùng nhau.
-
D.
Hai đường thẳng AB và AC có hai điểm chung.
Đáp án : B
Quan sát hình vẽ để trả lời.
Hình vẽ trên là hai đường thẳng AB và AC cắt nhau tại A, chỉ có 1 điểm chung nên ta chọn đáp án B.
Đáp án B.
-
A.
Ay và Bx
-
B.
Bx và By
-
C.
Ax và By
-
D.
AB và BA
Đáp án : B
Quan sát hình vẽ để trả lời câu hỏi.
Hai tia đối nhau phải là hai tia có chung gốc nên đáp án A, B, D sai.
Chỉ có Bx và By đúng.
Đáp án B.
Trên đường thẳng a lấy 10 điểm phân biệt. Số đoạn thẳng trong hình vẽ là:
-
A.
1
-
B.
10
-
C.
45
-
D.
90
Đáp án : C
Đếm số đoạn thẳng
Số đoạn thẳng là 45.
Đáp án C.
Lúc 10 giờ, góc tạo bởi kim giờ và kim phút là:
-
A.
Góc nhọn
-
B.
Góc vuông
-
C.
Góc tù
-
D.
Góc bẹt
Đáp án : A
Vẽ hình mô tả để xác định
Lúc 10 giờ, góc tạo bởi kim giờ và kim phút là: góc nhọn.
Đáp án A.
Áp dụng quy tắc cộng, trừ, nhân, chia.
1)
a) \(\frac{1}{4} + \frac{3}{4} \cdot \left( {\frac{2}{3} - 0,5} \right)\)\( = \frac{1}{4} + \frac{3}{4} \cdot \left( {\frac{2}{3} - \frac{1}{2}} \right)\)\( = \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{6}\)\( = \frac{1}{4} + \frac{1}{8}\)\( = \frac{3}{8}\)
b) \(1\frac{3}{{25}} - \frac{{17}}{{19}} - \frac{3}{{25}} + \frac{{2022}}{{2023}} - \frac{2}{{19}}\)\( = \left( {1\frac{3}{{25}} - \frac{3}{{25}}} \right) + \left( {\frac{{ - 17}}{{19}} + \frac{{ - 2}}{{19}}} \right) + \frac{{2022}}{{2023}}\) \( = 1 + ( - 1) + \frac{{2022}}{{2023}}\) \( = \frac{{2022}}{{2023}}.\)
2)
a) \(\frac{2}{3}x - \frac{1}{2} = \frac{1}{{10}}\)
\(\frac{2}{3}x = \frac{1}{{10}} + \frac{1}{2}\)
\(\frac{2}{3}x = \frac{3}{5}\)
\(x = \frac{3}{5}:\frac{2}{3}\)
\(x = \frac{3}{5}:\frac{2}{3}\)
\(x = \frac{9}{{10}}\)
Vậy \(x = \frac{9}{{10}}\).
b) \(5,16 - 2x = (5,7 + 2,3) \cdot ( - 0,3)\)
\(5,16 - 2x = - 2,4\)
\(2x = 5,16 - ( - 2,4)\)
\(2x = 7,56\)
\(x = 7,56:2\)
\(x = 3,78\)
Vậy \(x = 3,78\)
a) Tính \(\frac{m}{n}\) của a bằng \(\frac{m}{n}.a\).
b) Số phần trăm của a với b là \(\frac{{a.100}}{b}\% \)
a) Số học sinh xếp loại tốt là: \(40 \cdot \frac{2}{5} = 16\) ( học sinh)
Số học sinh xếp loại khá là: \((40 - 16) \cdot \frac{5}{8} = 15\) (học sinh)
Số học sinh xếp loại đạt là: \(40 - 16 - 15 = 9\) (học sinh)
b) Số học sinh xếp loại đạt chiếm số phần trảm của lớp là: \(\frac{{9.100}}{{40}}\% = 22,5\% \)
a) Tính \(\frac{m}{n}\) của a bằng \(\frac{m}{n}.a\).
b) Số phần trăm của a với b là \(\frac{{a.100}}{b}\% \)
a) Số học sinh xếp loại tốt là: \(40 \cdot \frac{2}{5} = 16\) ( học sinh)
Số học sinh xếp loại khá là: \((40 - 16) \cdot \frac{5}{8} = 15\) (học sinh)
Số học sinh xếp loại đạt là: \(40 - 16 - 15 = 9\) (học sinh)
b) Số học sinh xếp loại đạt chiếm số phần trảm của lớp là: \(\frac{{9.100}}{{40}}\% = 22,5\% \)
Vẽ hình theo hướng dẫn.
a) Xác định độ dài đoạn thẳng AB qua OA và OB.
b) Chứng minh OB = OC và O nằm giữa B và C nên O là trung điểm của BC.
c) Vẽ tia Oz và kể tên các góc trong hình.
Vẽ hình
a) Theo hình vẽ: \(AB = OA + OB = 4 + 2 = 6\;{\rm{cm}}\)
Vậy \(AB = 6\;{\rm{cm}}\)
b) Vì C là trung điểm của đoạn thẳng \({\rm{OA}}\) nên \(OC = \frac{{OA}}{2} = \frac{4}{2} = 2\;{\rm{cm}}\)
Suy ra \({\rm{OB}} = {\rm{OC}}\)
Lại có \({\rm{O}}\) nằm giữa \({\rm{B}}\) và \({\rm{C}}\)
Do đó O là trung điểm của đoạn thẳng \({\rm{BC}}\)
Vậy \({\rm{O}}\) là trung điểm của đoạn thẳng \({\rm{BC}}\).
c)
Các góc có trong hình vẽ là:
\(\widehat {{\rm{xOz}}};\widehat {{\rm{yOz}}};\widehat {{\rm{xOy}}},\widehat {xAy},\widehat {xCy},\widehat {xBy}\)
Nhân hai vế của S với 2 để rút gọn S.
\(S = \frac{1}{2} + \frac{2}{{{2^2}}} + \frac{3}{{{2^3}}} + \ldots + \frac{{2023}}{{{2^{2023}}}}\)
\(2S = 1 + \frac{2}{2} + \frac{3}{{{2^2}}} + \frac{4}{{{2^3}}} + \ldots + \frac{{2023}}{{{2^{2022}}}}\)
\(2S - S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \ldots + \frac{1}{{{2^{2022}}}} - \frac{{2023}}{{{2^{2023}}}}\)
\(S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \ldots + \frac{1}{{{2^{2022}}}} - \frac{{2023}}{{{2^{2023}}}}\)
\(2S = 2 + 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + \ldots + \frac{1}{{{2^{2021}}}} - \frac{{2023}}{{{2^{2022}}}}\)
\(2S - S = 2 - \frac{{2024}}{{{2^{2022}}}} + \frac{{2023}}{{{2^{2023}}}}\)
\(S = 2 - \frac{{4048 - 2023}}{{{2^{2023}}}}\)
Vậy \(S < 2\).