Giải bài 1. 29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức — Không quảng cáo

Giải chuyên đề học tập Toán lớp 11 Kết nối tri thức Bài tập cuối chuyên đề 1 Chuyên đề học tập Toán 11 kết


Giải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0.

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x 2 + y 2 – 2x – 4y – 4 = 0. Viết phương trình của đường tròn (C') là ảnh của đường tròn (C) qua phép đối xứng tâm A(3; – 3).

Phương pháp giải - Xem chi tiết

Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm \(M \ne O\) thành điểm M’ sao cho O  là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu . Điểm O được gọi là tâm đối xứng.

Nếu  thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)

Lời giải chi tiết

Ta có \(\left( C \right):{\rm{ }}{x^2} + {y^2}-2x-4y-4 = 0 \Leftrightarrow {x^2} + {y^2}-2.1{\rm{ }}x-2.2y-4 = 0.\)

Suy ra đường tròn (C) có tâm I(1; 2) và bán kính \(R = \sqrt {{1^2} + {2^2} - \left( { - 4} \right)}  = 3\).

Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C'). Vì (C') là ảnh của (C) qua phép đối xứng tâm A(3; – 3) nên I' là ảnh của I qua phép đối xứng tâm A(3; – 3) và R' = R = 3.

Vì I' là ảnh của I qua phép đối xứng tâm A nên A là trung điểm của II'.

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{x_{I'}} = 2{x_A} - {x_I} = 2.3 - 1 = 5}\\{{y_{I'}} = 2{y_A} - {y_I} = 2.\left( { - 3} \right) - 2 =  - 8}\end{array}} \right.\)nên I'(5; – 8).

Vậy phương trình đường tròn (C') là

\({\left( {x-5} \right)^2}\; + {\rm{ }}{\left[ {y-\left( {-8} \right)} \right]^2} = {3^2}\; \Leftrightarrow {\left( {x-5} \right)^2}\; + {\left( {y + 8} \right)^2}\; = 9.\)


Cùng chủ đề:

Giải bài 1. 24 trang 31 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 25 trang 31 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 26 trang 31 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 27 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 28 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 30 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 31 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 32 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 33 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 34 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức