Giải bài 1 trang 16 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Luyện tập chung trang 16 trang 16, 17, 18 Vở thực hành


Giải bài 1 trang 16 vở thực hành Toán 9 tập 2

Biết rằng parabol (y = a{x^2}left( {a ne 0} right)) đi qua điểm (Aleft( {2;4sqrt 3 } right)). a) Tìm hệ số a và vẽ đồ thị của hàm số (y = a{x^2}) với a vừa tìm được. b) Tìm tung độ của điểm thuộc parabol có hoành độ (x = - 1). c) Tìm các điểm thuộc parabol có tung độ (y = 5sqrt 3 ).

Đề bài

Biết rằng parabol \(y = a{x^2}\left( {a \ne 0} \right)\) đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\).

a) Tìm hệ số a và vẽ đồ thị của hàm số \(y = a{x^2}\) với a vừa tìm được.

b) Tìm tung độ của điểm thuộc parabol có hoành độ \(x =  - 1\).

c) Tìm các điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \).

Phương pháp giải - Xem chi tiết

a) Thay \(x = 2;y = 4\sqrt 3 \) vào hàm số \(y = a{x^2}\), giải phương trình thu được tìm được a.

+ Thay a vừa tìm được để viết parabol \(y = a{x^2}\).

+ Cách vẽ parabol \(y = a{x^2}\left( {a \ne 0} \right)\)

- Lập bảng ghi một số cặp giá trị tương ứng của x và y.

- Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).

b) Thay \(x =  - 1\) vào parabol tìm được trong câu a để tìm tung độ.

c) Thay \(y = 5\sqrt 3 \) vào parabol tìm được trong câu a để tìm hoành độ.

Lời giải chi tiết

a) Parabol đi qua điểm \(A\left( {2;4\sqrt 3 } \right)\) nên ta có: \(4\sqrt 3  = a{.2^2}\) suy ra \(a = \sqrt 3 \). Từ đó, vẽ được đồ thị của hàm số \(y = \sqrt 3 {x^2}\) như hình bên:

b) Tung độ của điểm thuộc parabol có hoành độ \(x =  - 1\) là \(y = \sqrt 3 .{\left( { - 1} \right)^2} = \sqrt 3 \).

c) Tọa độ điểm thuộc parabol có tung độ \(y = 5\sqrt 3 \) thỏa mãn:

\(5\sqrt 3  = \sqrt 3 .{x^2}\), hay \({x^2} = 5\),

suy ra \(x = \sqrt 5 \) hoặc \(x =  - \sqrt 5 \).

Vậy có hai điểm cần tìm là \(\left( {\sqrt 5 ;5\sqrt 3 } \right)\) và \(\left( { - \sqrt 5 ;5\sqrt 3 } \right)\).


Cùng chủ đề:

Giải bài 1 trang 6 vở thực hành Toán 9
Giải bài 1 trang 6 vở thực hành Toán 9 tập 2
Giải bài 1 trang 12 vở thực hành Toán 9
Giải bài 1 trang 12 vở thực hành Toán 9 tập 2
Giải bài 1 trang 15 vở thực hành Toán 9
Giải bài 1 trang 16 vở thực hành Toán 9 tập 2
Giải bài 1 trang 20 vở thực hành Toán 9
Giải bài 1 trang 21 vở thực hành Toán 9 tập 2
Giải bài 1 trang 25, 26 vở thực hành Toán 9 tập 2
Giải bài 1 trang 29, 30 vở thực hành Toán tập 2
Giải bài 1 trang 31 vở thực hành Toán 9