Giải bài 10 trang 76 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài 3. Biểu thức tọa độ của các phép toán vecto - SBT T


Giải bài 10 trang 76 sách bài tập toán 12 - Chân trời sáng tạo

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian (Oxyz) được minh hoạ như Hình 3. Cho biết (OABC.DEFH) là hình hộp chữ nhật và (EMF.DNH) là hình lăng trụ đứng. a) Tìm toạ độ của các điểm (B,F,H). b) Tìm toạ độ của các vectơ (overrightarrow {ME} ,overrightarrow {MF} ). c) Tính số đo (widehat {EMF}).

Đề bài

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian \(Oxyz\) được minh hoạ như Hình 3. Cho biết \(OABC.DEFH\) là hình hộp chữ nhật và \(EMF.DNH\) là hình lăng trụ đứng.

a) Tìm toạ độ của các điểm \(B,F,H\).

b) Tìm toạ độ của các vectơ \(\overrightarrow {ME} ,\overrightarrow {MF} \).

c) Tính số đo \(\widehat {EMF}\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB}  = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).

‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v  = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u  = \overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).

‒ Sử dụng công thức tính góc của hai vectơ \(\overrightarrow u  = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v  = \left( {{x_2};{y_2};{z_2}} \right)\):

\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).

Lời giải chi tiết

a) Giả sử \(B\left( {{x_B};{y_B};{z_B}} \right)\). Ta có

\(\overrightarrow {OA}  = \left( {6;0;0} \right),\overrightarrow {CB}  = \left( {{x_B};{y_B} - 4;{z_B}} \right)\).

\(OABC\) là hình chữ nhật nên \(\overrightarrow {OA}  = \overrightarrow {CB} \).

\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} - 4 = 0\\{z_B} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} = 4\\{z_B} = 0\end{array} \right.\). Vậy \(B\left( {6;4;0} \right)\).

Giả sử \(F\left( {{x_F};{y_F};{z_F}} \right)\). Ta có

\(\overrightarrow {A{\rm{E}}}  = \left( {0;0;4} \right),\overrightarrow {BF}  = \left( {{x_F} - 6;{y_F} - 4;{z_F}} \right)\).

\(ABF{\rm{E}}\) là hình chữ nhật nên \(\overrightarrow {A{\rm{E}}}  = \overrightarrow {BF} \).

\( \Leftrightarrow \left\{ \begin{array}{l}{x_F} - 6 = 0\\{y_F} - 4 = 0\\{z_F} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 6\\{y_B} = 4\\{z_B} = 4\end{array} \right.\). Vậy \(F\left( {6;4;4} \right)\).

Giả sử \(H\left( {{x_H};{y_H};{z_H}} \right)\). Ta có

\(\overrightarrow {O{\rm{D}}}  = \left( {0;0;4} \right),\overrightarrow {CH}  = \left( {{x_H};{y_H} - 4;{z_H}} \right)\).

\(OCH{\rm{D}}\) là hình chữ nhật nên \(\overrightarrow {O{\rm{D}}}  = \overrightarrow {CH} \).

\( \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} - 4 = 0\\{z_H} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 4\\{z_H} = 4\end{array} \right.\). Vậy \(H\left( {0;4;4} \right)\).

b) \(\overrightarrow {ME}  = \left( {6 - 6;0 - 2;4 - 6} \right) = \left( {0; - 2; - 2} \right),\overrightarrow {MF}  = \left( {6 - 6;4 - 2;4 - 6} \right) = \left( {0;2; - 2} \right)\).

c) \(\cos \widehat {EMF} = \cos \left( {\overrightarrow {ME} ,\overrightarrow {MF} } \right) = \frac{{0.0 + \left( { - 2} \right).2 + \left( { - 2} \right).\left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{0^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = 0\)

Vậy \(\widehat {EMF} = {90^ \circ }\).


Cùng chủ đề:

Giải bài 10 trang 26 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 63 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 65 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 76 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 78 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 11 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 11 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 11 trang 18 sách bài tập toán 12 - Chân trời sáng tạo