Giải bài 14 trang 95 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài 2. Công thức xác suất toàn phần. Công thức Bayes


Giải bài 14 trang 95 sách bài tập toán 12 - Cánh diều

Huy thực hiện liên tiếp hai thí nghiệm. Thí nghiệm thứ nhất có xác suất thành công là 0,6. Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,8. Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai là 0,3. Tính xác suất của các biến cố (A): “Cả hai thí nghiệm đều thành công”; (B): “Thí nghiệm thứ nhất không thành công, còn thí nghiệm thứ hai thành công”; (C): “Thí nghiệm thứ hai thành công”.

Đề bài

Huy thực hiện liên tiếp hai thí nghiệm. Thí nghiệm thứ nhất có xác suất thành công là 0,6. Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,8. Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai là 0,3. Tính xác suất của các biến cố

\(A\): “Cả hai thí nghiệm đều thành công”;

\(B\): “Thí nghiệm thứ nhất không thành công, còn thí nghiệm thứ hai thành công”;

\(C\): “Thí nghiệm thứ hai thành công”.

Phương pháp giải - Xem chi tiết

‒ Sử dụng công thức: \(P\left( {A \cap B} \right) = P\left( B \right).P\left( {A|B} \right)\).

‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).

Lời giải chi tiết

Xét biến cố \(D\): “Thí nghiệm thứ nhất thành công”;

Khi đó ta có: \(P\left( A \right) = P\left( {D \cap C} \right);P\left( B \right) = P\left( {\overline D  \cap C} \right)\).

Thí nghiệm thứ nhất có xác suất thành công là 0,6 nên ta có: \(P\left( D \right) = 0,6\). Vậy \(P\left( {\overline D } \right) = 1 - P\left( D \right) = 0,4\).

Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,8 nên ta có: \(P\left( {C|D} \right) = 0,8\).

Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai là 0,3 nên ta có: \(P\left( {C|\overline D } \right) = 0,3\).

Vậy ta có:

\(P\left( A \right) = P\left( {D \cap C} \right) = P\left( D \right).P\left( {C|D} \right) = 0,6.0,8 = 0,48\)

\(P\left( B \right) = P\left( {\overline D  \cap C} \right) = P\left( {\overline D } \right).P\left( {C|\overline D } \right) = 0,4.0,3 = 0,12\)

\(P\left( C \right) = P\left( {D \cap C} \right) + P\left( {\overline D  \cap C} \right) = 0,48 + 0,12 = 0,6\).


Cùng chủ đề:

Giải bài 13 trang 97 sách bài tập toán 12 - Cánh diều
Giải bài 14 trang 9 sách bài tập toán 12 - Cánh diều
Giải bài 14 trang 12 sách bài tập toán 12 - Cánh diều
Giải bài 14 trang 48 sách bài tập toán 12 - Cánh diều
Giải bài 14 trang 66 sách bài tập toán 12 - Cánh diều
Giải bài 14 trang 95 sách bài tập toán 12 - Cánh diều
Giải bài 14 trang 97 sách bài tập toán 12 - Cánh diều
Giải bài 15 trang 9 sách bài tập toán 12 - Cánh diều
Giải bài 15 trang 13 sách bài tập toán 12 - Cánh diều
Giải bài 15 trang 48 sách bài tập toán 12 - Cánh diều
Giải bài 15 trang 67 sách bài tập toán 12 - Cánh diều