Giải bài 17 trang 98 sách bài tập toán 12 - Cánh diều
Bảng 22 thống kê độ ẩm không khí trung bình các tháng năm 2022 tại Đà Nẵng và Quy Nhơn (đơn vị: %). a) Hãy lần lượt ghép các số liệu của Đà Nẵng, Quy Nhơn thành năm nhóm sau: \(\left[ {71;74} \right),\)\(\left[ {74;77} \right),\left[ {77;80} \right),\left[ {80;83} \right),\left[ {83;86} \right)\). b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Nẵng và Quy Nhơn.
Đề bài
Bảng 22 thống kê độ ẩm không khí trung bình các tháng năm 2022 tại Đà Nẵng và Quy Nhơn (đơn vị: %).
a) Hãy lần lượt ghép các số liệu của Đà Nẵng, Quy Nhơn thành năm nhóm sau: \(\left[ {71;74} \right),\)\(\left[ {74;77} \right),\left[ {77;80} \right),\left[ {80;83} \right),\left[ {83;86} \right)\).
b) Tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm của Đà Nẵng và Quy Nhơn.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).
‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:
+ Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}} < \frac{n}{4}\) nhưng \(c{f_p} \ge \frac{n}{4}\)). Ta gọi \(s,h,{n_p}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(p\), \(c{f_{p - 1}}\) là tần số tích luỹ của nhóm thứ \(p - 1\). Khi đó: \({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h\).
+ Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}} < \frac{{3n}}{4}\) nhưng \(c{f_q} \ge \frac{{3n}}{4}\)). Ta gọi \(t,l,{n_q}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(q\), \(c{f_{q - 1}}\) là tần số tích luỹ của nhóm thứ \(q - 1\). Khi đó: \({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l\).
‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).
‒ Sử dụng công thức tính số trung bình cộng của mẫu số liệu ghép nhóm: \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\)trong đó \(n = {m_1} + ... + {m_k}\) là cỡ mẫu và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) (với \(i = 1,...,k\)) là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right)\).
‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:
\({s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_m}{{\left( {{x_m} - \overline x } \right)}^2}}}{n}\)
‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(s = \sqrt {{s^2}} \).
Lời giải chi tiết
a) Ta có bảng sau:
b) • Đà Nẵng:
Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 86 - 71 = 15\).
Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{12}}{4} = 3\).
Nhóm 3 có đầu mút trái \(s = 77\), độ dài \(h = 3\), tần số của nhóm \({n_3} = 2\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 1 + 1 = 2\).
Ta có: \({Q_1} = s + \left( {\frac{{3 - c{f_2}}}{{{n_3}}}} \right).h = 77 + \left( {\frac{{3 - 2}}{2}} \right).3 = 78,5\) (%).
Nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\).
Nhóm 4 có đầu mút trái \(t = 80\), độ dài \(l = 3\), tần số của nhóm \({n_4} = 6\) và nhóm 3 có tần số tích luỹ \(c{f_3} = 1 + 1 + 2 = 4\).
Ta có: \({Q_3} = t + \left( {\frac{{9 - c{f_3}}}{{{n_4}}}} \right).l = 80 + \left( {\frac{{9 - 4}}{6}} \right).3 = 82,5\) (%).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 82,5 - 78,5 = 4\) (%).
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline x = \frac{{1.72,5 + 1.75,5 + 2.78,5 + 6.81,5 + 2.84,5}}{{12}} = 80,25\)
Phương sai của mẫu số liệu ghép nhóm đó là:
\(\begin{array}{l}{s^2} = \frac{1}{{12}}\left[ {1.{{\left( {72,5 - 80,25} \right)}^2} + 1.{{\left( {75,5 - 80,25} \right)}^2} + 2.{{\left( {78,5 - 80,25} \right)}^2} + 6.{{\left( {81,5 - 80,25} \right)}^2} + } \right.\\\left. { + 2.{{\left( {84,5 - 80,25} \right)}^2}} \right] = 11,1875\end{array}\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {11,1875} \approx 3,3448\).
• Quy Nhơn:
Khoảng biến thiên của mẫu số liệu ghép nhóm là: \(R = 86 - 71 = 15\).
Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{12}}{4} = 3\).
Nhóm 3 có đầu mút trái \(s = 77\), độ dài \(h = 3\), tần số của nhóm \({n_3} = 4\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 1 + 1 = 2\).
Ta có: \({Q_1} = s + \left( {\frac{{3 - c{f_2}}}{{{n_3}}}} \right).h = 77 + \left( {\frac{{3 - 2}}{4}} \right).3 = 77,75\) (%).
Nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.12}}{4} = 9\).
Nhóm 4 có đầu mút trái \(t = 80\), độ dài \(l = 3\), tần số của nhóm \({n_4} = 4\) và nhóm 3 có tần số tích luỹ \(c{f_3} = 1 + 1 + 4 = 6\).
Ta có: \({Q_3} = t + \left( {\frac{{9 - c{f_3}}}{{{n_4}}}} \right).l = 80 + \left( {\frac{{9 - 6}}{4}} \right).3 = 82,25\) (%).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 82,25 - 77,75 = 4,5\) (%).
Số trung bình cộng của mẫu số liệu ghép nhóm là:
\(\overline x = \frac{{1.72,5 + 1.75,5 + 4.78,5 + 4.81,5 + 2.84,5}}{{12}} = 79,75\)
Phương sai của mẫu số liệu ghép nhóm đó là:
\(\begin{array}{l}{s^2} = \frac{1}{{12}}\left[ {1.{{\left( {72,5 - 79,75} \right)}^2} + 1.{{\left( {75,5 - 79,75} \right)}^2} + 4.{{\left( {78,5 - 79,75} \right)}^2} + 4.{{\left( {81,5 - 79,75} \right)}^2} + } \right.\\\left. { + 2.{{\left( {84,5 - 79,75} \right)}^2}} \right] = 11,1875\end{array}\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(s = \sqrt {11,1875} \approx 3,3448\).