Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên (mathbb{R}).
Đề bài
Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên R.
a) f(x)={x2−x+2khix≤21x+1khix>2;
b) f(x)={x2+2xkhix≤12x+1khix>1.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa đạo hàm để xét tính liên tục và tính đạo hàm: Cho hàm số y=f(x) xác định trên khoảng (a;b) và x0∈(a;b). Nếu tồn tại giới hạn hữu hạn lim thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại {x_0}, kí hiệu là f'\left( {{x_0}} \right) hoặc y'\left( {{x_0}} \right). Vậy f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}
Lời giải chi tiết
a) Vì \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x + 1}} = \frac{1}{3} \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - x + 2} \right) = 4 nên f(x) gián đoạn tại x = 2. Do đó, f(x) không có giới hạn tại 2, không có đạo hàm tại 2.
b) Vì \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} + 1} \right) = 3;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 2x} \right) = 3;f\left( 1 \right) = 3 nên \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right). Do đó, hàm số f(x) liên tục tại x = 1.
Lại có: \mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\frac{2}{x} + 1 - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = - 2;
\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = 4
Suy ra \mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \ne \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}
Do đó, không tồn tại \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}
Vậy không tồn tại đạo hàm tại x = 1