Processing math: 28%

Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 1. Đạo hàm - SBT Toán 11 CTST


Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên (mathbb{R}).

Đề bài

Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên R.

a) f(x)={x2x+2khix21x+1khix>2;

b) f(x)={x2+2xkhix12x+1khix>1.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa đạo hàm để xét tính liên tục và tính đạo hàm: Cho hàm số y=f(x) xác định trên khoảng (a;b)x0(a;b). Nếu tồn tại giới hạn hữu hạn lim thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại {x_0}, kí hiệu là f'\left( {{x_0}} \right) hoặc y'\left( {{x_0}} \right). Vậy f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}

Lời giải chi tiết

a) Vì \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x + 1}} = \frac{1}{3} \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - x + 2} \right) = 4 nên f(x) gián đoạn tại x = 2. Do đó, f(x) không có giới hạn tại 2, không có đạo hàm tại 2.

b) Vì \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} + 1} \right) = 3;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 2x} \right) = 3;f\left( 1 \right) = 3 nên \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right). Do đó, hàm số f(x) liên tục tại x = 1.

Lại có: \mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\frac{2}{x} + 1 - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} =  - 2;

\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = 4

Suy ra \mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \ne \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}

Do đó, không tồn tại \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}

Vậy không tồn tại đạo hàm tại x = 1


Cùng chủ đề:

Giải bài 3 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 3 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 3 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 3 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1