Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Chân trời sáng tạo Bài tập cuối chương 5 - SBT Toán 12 Chân trời sáng tạo


Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Cho ba mặt phẳng \(\left( \alpha \right):3x + 3y + 6z + 13 = 0,\left( \beta \right):2x + 2y - 2z + 9 = 0\) và \(\left( \gamma \right):x - y - 21 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\). B. \(\left( \gamma \right) \bot \left( \beta \right)\). C. \(\left( \alpha \right)\parallel \left( \beta \right)\). D. \(\left( \alpha \right) \bot \left( \gamma \right)\).

Đề bài

Cho ba mặt phẳng \(\left( \alpha  \right):3x + 3y + 6z + 13 = 0,\left( \beta  \right):2x + 2y - 2z + 9 = 0\) và \(\left( \gamma  \right):x - y - 21 = 0\). Trong các mệnh đề sau, mệnh đề nào sai?

A. \(\left( \alpha  \right) \bot \left( \beta  \right)\).

B. \(\left( \gamma  \right) \bot \left( \beta  \right)\).

C. \(\left( \alpha  \right)\parallel \left( \beta  \right)\).

D. \(\left( \alpha  \right) \bot \left( \gamma  \right)\).

Phương pháp giải - Xem chi tiết

Cho hai mặt phẳng \(\left( {{\alpha _1}} \right):{A_1}x + {B_1}y + {C_1}{\rm{z}} + {D_1} = 0\) và \(\left( {{\alpha _2}} \right):{A_2}x + {B_2}y + {C_2}{\rm{z}} + {D_2} = 0\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}}  = \left( {{A_2};{B_2};{C_2}} \right)\).

Khi đó \(\left( {{\alpha _1}} \right)\parallel \left( {{\alpha _2}} \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}}  = k\overrightarrow {{n_2}} \\{D_1} \ne k{{\rm{D}}_2}\end{array} \right.\left( {k \in \mathbb{R}} \right)\)

\(\left( {{\alpha _1}} \right) \bot \left( {{\alpha _2}} \right) \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0 \Leftrightarrow {A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2} = 0\)

Lời giải chi tiết

\(\left( \alpha  \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {3;3;6} \right)\).

\(\left( \beta  \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {2;2; - 2} \right)\).

\(\left( \gamma  \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_3}}  = \left( {1;0; - 1} \right)\).

Ta có: \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 3.2 + 3.2 + 6.\left( { - 2} \right) = 0\) nên \(\left( \alpha  \right) \bot \left( \beta  \right)\). Vậy a) đúng, c) sai.

Chọn C.


Cùng chủ đề:

Giải bài 4 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 45 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 54 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 60 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 61 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 63 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 64 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 71 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 76 sách bài tập toán 12 - Chân trời sáng tạo
Giải bài 4 trang 77 sách bài tập toán 12 - Chân trời sáng tạo