Giải bài 48 trang 79 sách bài tập toán 8 – Cánh diều — Không quảng cáo

SBT Toán 8 - Giải SBT Toán 8 - Cánh diều Bài 8. Trường hợp đồng dạng thứ ba của tam giác - SBT T


Giải bài 48 trang 79 sách bài tập toán 8 – Cánh diều

Cho hình bình hành \(ABCD\) \(\left( {AC > BD} \right)\). Từ \(C\) kẻ \(CE\) vuông góc với \(AB\) (\(E\) thuộc đường thẳng \(AB\)), \(CF\) vuông góc với \(AD\) (\(F\) thuộc đường thẳng \(AD\)).

Đề bài

Cho hình bình hành \(ABCD\) \(\left( {AC > BD} \right)\). Từ \(C\) kẻ \(CE\) vuông góc với \(AB\) (\(E\) thuộc đường thẳng \(AB\)), \(CF\) vuông góc với \(AD\) (\(F\) thuộc đường thẳng \(AD\)). Chứng minh: \(AB.AE + AD.AF = A{C^2}\).

Phương pháp giải - Xem chi tiết

Áp dụng trường hợp đồng dạng thứ ba của tam giác vào tam giác vuông:

Nếu tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

Lời giải chi tiết

Gọi \(H,K\) lần lượt là hình chiếu của \(D,B\) trên đường thẳng \(AC\).

Ta có \(\Delta AHD\backsim \Delta AFC=>\frac{AD}{AC}=\frac{AH}{AF}\) hay \(AD.AF = AC.AH\) (1)

Tương tự \(\Delta AKB\backsim \Delta AEC=>\frac{AB}{AC}=\frac{AK}{AE}\) hay \(AB.AE = AC.AK\) (2).

Vì \(\Delta ABK\backsim \Delta CDH\) (cạnh huyền – góc nhọn) nên \(AK = HC\)

Từ đó, cộng (1) và (2) theo vế ta được:

\(AD.AF + AB.AE = AC.\left( {AH + AK} \right) = AC\left( {AH + HC} \right) = A{C^2}\).


Cùng chủ đề:

Giải bài 44 trang 78 sách bài tập toán 8 – Cánh diều
Giải bài 44 trang 104 sách bài tập toán 8 - Cánh diều
Giải bài 45 trang 78 sách bài tập toán 8 – Cánh diều
Giải bài 46 trang 78 sách bài tập toán 8 – Cánh diều
Giải bài 47 trang 79 sách bài tập toán 8 – Cánh diều
Giải bài 48 trang 79 sách bài tập toán 8 – Cánh diều
Giải bài 49 trang 79 sách bài tập toán 8 – Cánh diều
Giải bài 50 trang 81 sách bài tập toán 8 – Cánh diều
Giải bài 51 trang 81 sách bài tập toán 8 – Cánh diều
Giải bài 52 trang 82 sách bài tập toán 8 – Cánh diều
Giải bài 53 trang 82 sách bài tập toán 8 – Cánh diều