Giải bài 5.18 trang 83 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Cho m là một số thực. Biết lim.
Đề bài
Cho m là một số thực. Biết \mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = - \infty . Xác định dấu của m.
Phương pháp giải - Xem chi tiết
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, ta có: \mathop {\lim }\limits_{x \to + \infty } c = c,\mathop {\lim }\limits_{x \to - \infty } c = c
- Với k là một số nguyên dương, ta có: \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{x^k}}} = 0,\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^k}}} = 0
Lời giải chi tiết
Ta có: \mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } {x^2}\left( {\frac{m}{x} - 1} \right)\left( {m + \frac{1}{x}} \right) = - m
Để \mathop {\lim }\limits_{x \to - \infty } \left[ {\left( {m - x} \right)\left( {mx + 1} \right)} \right] = - \infty thì m > 0